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Keyword advertising, including sponsored links and contextual advertising, powers many of today’s online
information services such as search engines and Internet-based emails. This paper examines the design of

keyword auctions, a novel mechanism that keyword advertising providers such as Google and Yahoo! use to
allocate advertising slots. In our keyword auction model, advertisers bid their willingness-to-pay per click on
their advertisements, and the advertising provider can weight advertisers’ bids differently and require differ-
ent minimum bids based on advertisers’ click-generating potential. We study the impact and design of such
weighting schemes and minimum-bid policies. We find that weighting scheme determines how advertisers
with different click-generating potential match in equilibrium. Minimum bids exclude low-valuation advertisers
and at the same time may distort the equilibrium matching. The efficient design of keyword auctions requires
weighting advertisers’ bids by their expected click-through-rates, and requires the same minimum weighted
bids. The revenue-maximizing weighting scheme may or may not favor advertisers with low click-generating
potential. The revenue-maximizing minimum-bid policy differs from those prescribed in the standard auction
design literature. Keyword auctions that employ the revenue-maximizing weighting scheme and differentiated
minimum bid policy can generate higher revenue than standard fixed-payment auctions. We draw manage-
rial implications for pay-per-click and other pay-for-performance auctions and discuss potential applications to
other areas.
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1. Introduction
Advances in information technology have created
radically new business models, most notably the
integration of advertising with keyword-based target-
ing, or “keyword advertising.” A growing number of
online services, including search engines, news web-
sites, and Internet-based emails, are powered by key-
word advertising, which reached a total revenue of
$8.5 billion in 2007 (Interactive Advertising Bureau
and PricewaterhouseCoopers 2008). Keyword adver-
tising has two main variations: advertising based on
keywords employed by users in search engines, often
known as “sponsored links,” and advertising based

on keywords embedded in the content users view,
often known as “contextual advertising.” Keyword
advertising is distinguished from offline advertising
and other online advertising because it delivers the
most relevant advertisement to Internet users, yet in
less intrusive ways. The effectiveness of this type of
advertising has been demonstrated in its acceptance
among marketers. The leading provider of keyword
advertising, Google, increased its total revenue 39-fold
between 2002 and 2007 to $16.6 billion, mostly from
keyword advertising. Keyword advertising has con-
sistently accounted for about 40% of the total online
advertising revenue in the last few years and will
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remain the biggest form of online advertising for years
to come. It is expected to reach about $16.8 billion by
2011 (eMarketer 2007).
Keyword advertising is undoubtedly enabled by

new information technologies. One of the key differ-
ences between keyword advertising and traditional
forms of advertising such as radio and television is
that keyword advertising providers, with the help of
information technology, can better track outcomes of
advertisements including how many Internet users
click on them and the number that end up making a
purchase. The ability to track such outcomes not only
allows marketers to better account for their advertis-
ing campaigns, but also shapes the design of keyword
auctions—a novel mechanism that keyword advertis-
ing providers such as Google, Yahoo!, and MSN use
to allocate advertising slots. First, it enables outcome-
based pricing (or pay-for-performance), including the
now standard “pay-per-click,” in which advertisers
pay only when Internet users click on their adver-
tisements, and new variants such as “pay-per-call”
(advertisers pay each time an Internet user contacts
the advertiser) and “pay-per-purchase” (advertisers
pay each time an Internet user follows the advertise-
ment to make a purchase). Second, it allows adver-
tising providers to gather information on advertisers’
potential to generate outcomes. For example, in
pay-per-click advertising, advertising providers typ-
ically accumulate information on advertisers’ click-
through rates (CTRs)—the number of clicks on
an advertisement divided by the number of times
displayed—which can be used to infer advertisers’
click-generating potential. This paper examines how
such information—the ex ante information on adver-
tisers’ potential to generate outcomes—should be
integrated into the design of keyword auctions that
use outcome-based pricing.
The ex ante information on advertisers’ outcome-

generating potential has been gradually integrated
into keyword auction designs in terms of ranking rules
and minimum-bid policies. The initial keyword auc-
tions, as introduced by Overture (now a subsidiary of
Yahoo!), rank advertisers solely by their willingness-
to-pay per click (henceforth unit price), thus making
no use of information on advertisers’ click-generating
potential. In 2002, Google used such information for
the first time by ranking advertisers by the product

of unit prices they bid and their historical CTRs so
that, everything else being equal, an advertiser with
a higher CTR will get a better slot. Later, Google
extended the ranking factor from CTRs to a more com-
prehensive “quality score” that also takes into account
the quality of the advertisement text and other unan-
nounced relevance factors. Yahoo! adopted a similar
ranking rule in its new advertising platform. Recently,
advertising providers have begun to make minimum
bids depend on advertisers’ click-generating potential.
For example, Google recently switched from a one-
size-fits-all minimum-bid policy to one that requires
higher minimum bids for advertisers with low CTRs.
These novel designs raise many questions. For exam-
ple, what is the impact of the weighted ranking rules
and differentiated minimum-bid policies on adver-
tisers’ equilibrium bidding behavior? How should
advertising providers rank advertisers with different
CTRs and set minimum bids for them? The goal of this
paper is to address these issues.
We address the issues by studying a model of key-

word auctions. In this model, advertisers bid unit
prices; the advertising provider not only receives unit-
price bids from advertisers but also takes into account
the information on the advertisers’ click-generating
potential. Such information allows the advertis-
ing provider to differentiate advertisers with high
expected CTRs (h type) from those with low expected
CTRs (l type). Advertisers, on the other hand, cannot
tell another advertiser’s CTR-type or valuation-per-
click. The advertising provider can assign different
weighting factors and impose different minimum bids
for advertisers with high and low expected CTRs.
Using such a framework, we study how weight-
ing schemes and differentiated minimum-bid policies
affect advertisers’ equilibrium bidding and how to
design such keyword auctions in terms of choosing
weighting factors and minimum bids for advertis-
ers with different expected CTRs. Such design issues
depart from those in standard auctions where no sim-
ilar information exists. Our focus on design issues
also differentiates our study from studies that focus
on equilibrium analysis under given auction rules,
such as Edelman et al. (2007) and Varian (2007). More
importantly, how to best design weighting schemes
and minimum-bid policies is important to the per-
formance of keyword advertising platforms used by
search engines.
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We study the design of weighting schemes and
minimum-bid policies from two perspectives: one that
maximizes total expected valuation created (the effi-
cient design) and one that maximizes the auctioneer’s
expected revenue (the revenue-maximizing design). The
efficient design maximizes the “total pie.” Such a
design is most relevant at the developing stage of
the keyword advertising market in which advertising
providers are likely to attract advertisers by passing
much of the valuation created to them. As the key-
word advertising market becomes mature and market
shares stabilize, advertising providers will more likely
focus on profitability, thereby adopting a revenue-
maximizing design.
Our study generates several important insights.

We demonstrate that weighting schemes and dif-
ferentiated minimum bid policies have a signifi-
cant impact on equilibrium bidding. The weighting
scheme determines how advertisers with different
expected CTRs match in equilibrium—an advertiser
with a low weighting factor compensates by bidding
higher (than one with the same valuation-per-click
but a higher weighting factor). Minimum bids exclude
low-valuation advertisers and, when not equally con-
straining, can distort the equilibrium matching: some
of the less-constrained advertisers will choose not to
compete with their more-constrained competitors by
bidding low. Despite these nontrivial equilibrium fea-
tures, the efficient keyword auction design is remark-
ably simple: it weights advertisers’ unit-price bids
with their expected CTRs and requires the same min-
imum weighted bid. This implies that one should
rank advertisers as if they bid their true valua-
tion, and set higher minimum bids for advertisers
with lower expected CTRs. The revenue-maximizing
design may generate higher revenue than standard
fixed-payment auctions, but requires fine balancing
between low- and high-CTR advertisers based on
their expected CTRs and valuation-per-click distri-
butions. Relative to the efficient weighting scheme,
the revenue-maximizing weighting scheme may favor
low- or high-CTR advertisers. In choosing revenue-
maximizing minimum bids, advertising providers
should consider the effect of excluding low-valuation
advertisers as well as that of distorted allocations
among advertisers with different expected CTRs.

The rest of the paper is organized as follows. In §2
we discuss the related literature. In §3 we lay out
our research model. We examine weighting scheme
design and differentiated minimum bids design in §4
and §5, respectively. We compare keyword auctions to
standard fixed-payment auctions in §6. Section 7 dis-
cusses some extensions, and §8 concludes the paper.

2. Related Literature
How auctioneers should use available information
has been an important area of investigation in the auc-
tion literature. The early literature focuses on ex post
information. Riley (1988) finds that in common-value
auctions, such as drilling-right auctions, auctioneers
can increase their revenue by tying winners’ pay-
ment with the ex post information on the item’s
value. McAfee and McMillan (1986) demonstrate that
in procurement auctions, making contractors’ (bid-
ders’) payment partially depend on their ex post
realized costs can reduce the buyer’s procurement
costs. This paper focuses on how auctioneers can use
ex ante information on bidders’ outcome-generating
potential.
This research is most related to research on “scor-

ing auctions,” or auctions in which bidders are ranked
by a score that summarizes multiple underlying
attributes. Che (1993) and Asker and Cantillon (2008)
study a form of scoring auction used in procure-
ment settings, in which the score is a function of sup-
pliers’ nonprice attributes (e.g., quality and time-to-
completion) minus the price they ask. Ewerhart and
Fieseler (2003) study another form of scoring auction,
in which a score is a weighted sum of unit-price
bids for each input factor (e.g., labor and materials).
All three papers show that scoring auctions, though
inefficient, can generate higher revenues than effi-
cient mechanisms such as fixed-payment first-price
auctions. Keyword auctions in this paper are differ-
ent from the above scoring auctions in auction rules,
equilibrium bidding behavior, and application set-
tings. For example, we study a multiplicative scor-
ing rule that is different from other scoring auctions.
The difference in scoring rules also leads to differ-
ent equilibrium features (e.g., kinks and jumps in our
setting). Another important difference is that equi-
librium bidding in other scoring auctions is deter-
mined by a single parameter, whereas in our paper,
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equilibrium bidding is determined both by adver-
tisers’ valuation-per-click and by their CTR signals.
Besides scoring rules, we study differentiated min-
imum bid policies, which are not discussed in the
aforementioned literature.
This paper is closely related to previous studies

on ranking rules in keyword auctions. Recall that
one approach ranks advertisers only by their unit
prices, whereas the other approach ranks advertisers
using the product of their unit prices and historical
CTRs. Liu and Chen (2006) and Lahaie (2006) study
the equilibrium bidding under the two approaches
and show that the latter approach is efficient and
that the revenues generated by the two approaches
are ambiguously ranked. Liu and Chen (2006) study
the revenue-maximizing design under a more gen-
eral class of ranking rules with ranking-by-price and
ranking-by-price × CTR as two special cases. They
show that neither ranking-by-price nor ranking-by-
price × CTR is revenue-maximizing. We extend Liu
and Chen (2006) in several ways. First, this paper con-
siders a general multislot setting, whereas Liu and
Chen (2006) assume a single slot. Second, this paper
allows valuation-per-click to be correlated with CTR
signals. Third, for the first time in the literature, this
paper studies the use of differentiated minimum bids,
together with the weighted ranking rule, as a way of
exploiting ex ante information on advertisers.
Several authors have looked at keyword auctions

from different perspectives. Following the “auction
of contracts” literature (McAfee and McMillan 1986,
Samuelson 1986), a few authors (e.g., Sundararajan
2006) study whether advertisers should pay a fixed
payment, a contingent payment, or a combination of
the two. Weber and Zheng (2007) study a model of
paid referrals in which firms can offer a “bribe” to
the search engine in exchange for a higher position.
They show that the revenue-maximizing design is a
weighted average of the “bribe” and the quality of
the product offered by each firm. Feng (2007) stud-
ies the optimal allocation of multiple slots when buy-
ers’ valuation of slots decreases at different speeds.
Edelman et al. (2007) and Varian (2007) examine equi-
libria of auctions with a “generalized second price”
(GSP) payment rule, that is, that winners pay only
the lowest price that keeps their positions. They study
GSP auctions under a complete-information setting

(that is, advertisers know each others’ valuation for
slots).1 Edelman et al. (2007) show that GSP auc-
tions under a complete-information setting do not
have a dominant-strategy equilibrium, and advertis-
ers will not bid their true valuation. Both Edelman
et al. (2007) and Varian (2007) show that GSP auc-
tions admit a range of stable equilibria, and the auc-
tioneer’s equilibrium revenue under the GSP rule is
at least as high as that under the Vickrey-Clarke-
Groves mechanism. Although their characterization
of the equilibria under the GSP rule applies to both
the rank-by-price case and the rank-by-price × CTR
case, they do not study what ranking rules adver-
tising providers should choose, nor do they study
optimal minimum-bid policies. This paper comple-
ments theirs by examining how ranking rules and
minimum-bid policies affect equilibrium bidding and
how advertising providers should design such auc-
tion dimensions. Also, different from Edelman el al.
(2007) and Varian (2007), we model keyword auctions
as an incomplete-information game (i.e., advertisers
only know a distribution of other advertisers’ valu-
ation and click-generating abilities). The real-world
keyword auctions may lie between complete infor-
mation and incomplete information. For example,
Google does not publish advertisers’ bids whereas
Yahoo! does with measures that prevent large-scale
automatic harvesting of such information. In either
case, advertisers may not know at every minute how
much other advertisers value the slots.

3. Model Setup
We consider a problem of assigning m advertising
slots associated with a keyword to n (n ≥ m) risk-
neutral advertisers. Each advertiser has one adver-
tisement for the keyword and can use only one slot.
The number of clicks an advertisement can attract
depends both on the quality of the advertisement and
on the prominence of the slot the advertisement is
assigned to. The quality of an advertisement is con-
sidered an attribute of the advertisement and may
be determined by the relevance of the advertisement
to the keyword, the attractiveness of the advertised

1 Edelman et al. (2007) also study a related “generalized English
auction” in which advertisers do not have complete information on
others’ valuation but can observe their previous bids.
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product or service, and how well the advertisement
is written. For example, for the keyword “refinance,”
an advertisement from a more reputable lender may
generate more clicks than one from a less reputable
lender. The prominence of a slot is considered a slot-
specific factor and may be determined by the posi-
tion, size, shape, or media format (text, image, or
video) of the slot. For example, an advertisement may
attract more clicks when placed on the top of a page
than when placed at the bottom of the page. In this
light, we assume the number of clicks generated by
an advertiser at slot j is �jq. �j is a deterministic fac-
tor that we use to capture the prominence of slot j .
We assume �1 ≥ �2 · · · ≥ �m > 0 and normalize �1 = 1.
q is a stochastic number that we use to capture the
quality of the advertisement. We interpret q as the
advertiser’s CTR in the sense that the higher the qual-
ity of the advertisement, the more likely a Web user
will click on it. It is important to note that, in general,
CTRs are subject to both the advertisement effect and
the slot effect. In this paper, an advertiser’s CTR refers
exclusively to the attractiveness of an advertisement,
regardless of any slot effect.
Though an advertiser’s CTR is realized only after

the auction, the advertiser and the auctioneer may
have ex ante information about the advertiser’s future
CTRs. This is because e-commerce technologies make
it easy for advertising providers to track advertisers’
past CTRs and to make predictions about their future
CTRs. We assume that the auctioneer can observe a
signal about each advertiser’s future CTR; the same
signal is observed by the advertiser but not by other
advertisers. For simplicity, we assume that such sig-
nal allows the auctioneer to distinguish between two
types of advertisers, those with high expected CTRs
(h type) and those with low expected CTRs (l type).
We will extend our model to a multiple CTR-type case
in §7. Denote Qh and Ql 
Qh >Ql > 0� as the expected
CTRs for l- and h-type advertisers, respectively. We
assume the probabilities for advertisers being h type
and l type are � and 1−�, respectively. These proba-
bilities are common knowledge.
Each advertiser has a valuation v for each click,

termed the advertiser’s valuation-per-click. Advertis-
ers may differ in valuation-per-click. For example, for
the keyword “refinance,” bankone.com may have a

higher valuation-per-click than aggregate lender lend-
ingtree.com. The distribution of the valuation-per-
click may be correlated with the advertiser’s CTR
signal such that l- and h-type advertisers may have
different valuation-per-click distributions. For exam-
ple, aggregate lenders (e.g., lendingtree.com) may
have higher CTRs but lower valuation-per-click than
banks (e.g., bankone.com) for the keyword “refi-
nance.” Let Fl
v� and Fh
v� denote the cumulative
distribution of valuation-per-click for l- and h-type
advertisers, respectively. The realization of an adver-
tiser’s valuation-per-click is not known by the auction-
eer or other advertisers. But the distributions Fh
v� and
Fl
v� are common knowledge.
We assume Fl
v� and Fh
v� have a fixed support

�0�1�, and the density functions, fl
v� and fh
v�, are
positive and differentiable everywhere within the sup-
port. This assumption can be generalized to �vl� v̄l�
and �vh� v̄h� for l- and h-type advertisers, respec-
tively. We also assume that one advertiser’s valuation-
per-click and expected-CTR type are independent of
another advertiser’s.2

We assume advertisers’ payoff functions are addi-
tive in their total valuation and the payment. In par-
ticular, conditional on winning slot j , an advertiser’s
payoff is

vq�j −payment� (1)

Advertising slots are sold through a weighted unit-
price auction, which we describe below. Each adver-
tiser is asked to submit a b that is the advertiser’s
willingness-to-pay per click, or unit price. The auc-
tioneer assigns each advertiser a score based on the
advertiser’s unit-price bid and CTR signal. The score
for an advertiser is

s =
{
b� if the advertiser is h type�

wb� if the advertiser is l type,
(2)

where w is the weighting factor for l-type advertisers,
and the weighting factor for h-type advertisers is nor-
malized to one. The auctioneer allocates the first slot

2 The independent-private-value assumption applies to auctions
in which the bidders are buying for their own use and not for
resale (McAfee and McMillan 1987). We consider keyword auctions
as independent-private-value auctions because advertisers or their
advertising agencies bid on slots to display their own advertise-
ments, and slots, once sold, are assigned to specific advertisements
and cannot be resold to other advertisers.
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to the advertiser with the highest score, the second
slot to the advertiser with the second highest score,
and so on. Winners pay for their realized clicks at
unit prices they bid.3 We call such an auction format
a weighted unit-price auction.
By allowing w to take different values, we can

accommodate the following stylized auction formats.
When w equals one, the winners are determined
solely by the prices they bid. One example is Over-
ture’s auction format. When w is less than one, bid
prices from l-type advertisers are weighted less than
those from h-type advertisers. Google’s auction fits
in this category because under Google’s ranking pol-
icy, bids from advertisers with high click-generating
potential are weighted more.
We also allow the auctioneer to set different mini-

mum bids (or reserve prices) for advertisers with dif-
ferent CTR signals. In particular, we let bl and bh
be the minimum bids for l- and h-type advertisers,
respectively.
The auction proceeds as follows. First, the auction-

eer announces weighting factors and minimum bids.
All advertisers receive signals about their future CTRs
and learn their valuation-per-click before the auction.
Then, each advertiser submits a unit-price bid, and
the auctioneer assigns advertisers to slots based on
their unit-price bids and CTR signals according to
the announced weighting scheme. Finally, the number
of clicks is realized, and advertisers pay the realized
clicks at the unit prices they bid.

4. Designing Weighting Scheme
We start by assuming no minimum bids so that we
can focus on the design of the weighting scheme. We
will first consider how weighting factors affect adver-
tisers’ equilibrium bidding. Then, we will examine the
efficient and revenue-maximizing weighting schemes.

3 An alternative payment rule is a “second-score” rule; that is,
advertisers will pay a price that matches the next highest score
rather than their own scores. We show in the appendix that under
our framework, the second-score weighted unit-price auctions gen-
erate the same expected revenue for the auctioneer as the “first-
score” version studied here. The main results in this paper apply
also to the second-score setting, as these results concern only the
expected revenue. We choose to work with the first-score format as
it permits explicit bidding functions.

4.1. Weighting Scheme and Equilibrium Bidding
Throughout this paper, we consider a symmetric,
pure-strategy Bayesian-Nash equilibrium. By “sym-
metric,” we mean that advertisers with the same
valuation-per-click and CTR signal will bid the same.
Let bh
v� denote the equilibrium bidding function

for h-type advertisers, and bl
v� for l-type advertis-
ers. A bidding function in our setting is a function
that associates advertisers’ unit-price bids with their
valuation-per-click. Because advertisers differ both in
valuation-per-click and in expected CTRs, we need a
pair of bidding functions to describe our equilibrium.
The condition for the pair to be an equilibrium is that
an advertiser finds it is optimal to bid according to
this pair if all other advertisers bid according to this
pair. We conjecture that both bidding functions are
strictly increasing (we verify this in the appendix).
The following result is key to our analysis.

Lemma 1. An l-type advertiser with valuation-per-click
v matches an h-type advertiser with valuation-per-click wv
in equilibrium. Formally,

bh
wv�=wbl
v�� ∀v� wv ∈ �0�1�� (3)

Proof. All proofs are in the appendix. �

The intuition for Lemma 1 is as follows. Consider
an h-type advertiser with valuation-per-click wv and
an l-type advertiser with valuation-per-click v. If the
former bids wb and the latter bids b, the two adver-
tisers tie, and therefore their chances of winning each
slot are the same. Meanwhile, conditional on win-
ning the same slot, the l-type advertiser’s payoff
(Ql�j
wv − wb�) differs from the h-type advertiser’s
(Qh�j
v− b�) only by a scalar. So their total expected
payoffs differ only by a scalar, too. Because multi-
plying the objective of an optimization problem by a
scalar does not change the solution to the problem,
we conclude that if bidding b is optimal for the l-type
advertiser then bidding wb must also be optimal for
the h-type advertiser, and vice versa.
We call two advertisers comparable if they tie or

match (in scores) in equilibrium without minimum bids.
Lemma 1 greatly simplifies the derivation of adver-
tisers’ equilibrium winning probabilities. Let us first
consider an l-type advertiser’s winning probability
against any advertiser, or the advertiser’s one-on-one
winning probability, denoted as Gl
v�. Lemma 1 sug-
gests that an l-type advertiser with valuation-per-click
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v can beat another advertiser, say B, if and only if B
is l type and has valuation-per-click less than v, or
B is h type and has valuation-per-click less than wv.
Hence,

Gl
v�= �Fh
wv�+ 
1−��Fl
v�� (4)

Similarly, an h-type advertiser’s winning probabil-
ity against any advertiser, Gh
v�, is

Gh
v�= �Fh
v�+ 
1−��Fl
v/w�� (5)

We denote P jl 
v� and P
j

h
v� as l- and h-type advertis-
ers’ probabilities of winning the jth slot, respectively.
We can write P jl 
v� and P

j

h
v� as

P
j
�
v�=

(
n−1
n−j

)
G�
v�

n−j �1−G�
v��j−1� �∈�l�h�� (6)

Proposition 1. Given w 
w > 0�, equilibrium bidding
functions are given by


bl
v�= v−
∫ v
0

∑m
j=1 �jP

j

l 
t� dt∑m
j=1 �jP

j

l 
v�
� ∀v ∈ �0�1��

bh
v�= v−
∫ v
0

∑m
j=1 �jP

j

h
t� dt∑m
j=1 �jP

j

h
v�
� ∀v ∈ �0�1��

(7)

Proposition 1 characterizes the equilibrium for a
weighted unit-price auction. In Figure 1, we plot
advertisers’ equilibrium scores when l-type advertis-
ers’ weighting factor is 0.5 and the valuation distri-
butions are uniform. Recall that score is bid times
weighting factor. We plot scores instead of unit-price

Figure 1 Equilibrium Bidding Functions
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bids because the former better illustrates the equi-
librium matching between l- and h-type advertisers.
Clearly, an l type with valuation-per-click 1 ties with
an h type with valuation-per-click 0�5, and h-type
advertisers with higher valuation have no comparable
l-type advertisers.
Interestingly, the figure shows a kink in h-type

advertisers’ equilibrium bidding function. Intuitively,
this is because h-type advertisers with valuation-
per-click less than 0�5 compete with both l- and
h-type advertisers, whereas h-type advertisers with
valuation-per-click higher than 0.5 complete only with
h-type advertisers. The sudden change in the num-
ber of competitors causes h-type advertisers with
valuation-per-click higher than 0.5 to bid consider-
ably less aggressively than h-type advertisers with
valuation-per-click lower than 0.5, thus the kink. Gen-
erally speaking, when the weighting factor w for
l-type advertisers is less than one, the h-type adver-
tisers’ equilibrium bidding function has a kink at w.
When w is greater than one, the l-type advertis-
ers’ equilibrium bidding function has a kink at 1/w.4

These kinks reflect the impact of weighting scheme
on the equilibrium matching between l- and h-type
advertisers.
Proposition 1 has the following implications. Adver-

tisers who receive a high weighting factor are favored
in equilibrium allocation, and can win more often with
the same unit price. Some advertisers who receive a
high weighting factor may out-compete all advertisers
who receive a low weighting factor, and thus can ben-
efit from such a situation by bidding less aggressively.
Increasing l-type advertisers’ weighting factor causes
the following effects. It increases l-type advertisers’
one-on-one winning probability and decreases h-type
advertisers’ one-on-one winning probability (see (4)
and (5)). Consequently, l-type advertisers are selected
more often into high-ranked slots and have a larger
total expected winning (defined as the expected value

4 If we allow more general supports, such as �vl� v̄l� and �vh� v̄h�,
there may be as many as two kinks in the bidding functions. For
example, with general supports �1� z� (2 < z < 4) for l type and
�1�2� for h type and w = 0�5, l-type advertisers’ equilibrium bid-
ding function has a kink at 2, and h-type advertisers’ equilibrium
bidding function has a kink at z/2. In some special cases, such as
with supports �2�4� for l type and �1�2� for h type and w = 0�5,
there is no kink in either type’s equilibrium bidding function.
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of the slot an advertiser may win, i.e.,
∑m
j=1 �jP

j
�
v�).

Meanwhile, it causes more h-type advertisers to bid
aggressively because there are more h-type advertisers
with valuation-per-click below w who face competi-
tion from both CTR-types.

4.2. Efficient Weighting Scheme
We measure the efficiency by the total value cre-
ated. The efficiency criterion, therefore, emphasizes
the “total pie,” which is important if the auctioneer’s
objective is to transfer much of the value to advertis-
ers in return for their participation. This is especially
true when the keyword advertising market is still
nascent, and online advertising providers are still try-
ing to steal market share from the traditional adver-
tising providers. The efficiency criterion may become
the criterion of choice for advertising providers who
aim at long-term development rather than short-term
profits, regardless of their market positions.
We define the efficient weighting factor, weff , as

one that maximizes the total expected valuation. We
focus on expected valuation (thus ex ante efficiency)
because advertisers’ valuation for slots is also deter-
mined by the realized CTRs after the auction. The
assignment of an advertiser with valuation-per-click
v and CTR-signal � to slot j will generate an expected
valuation of v�jQ�, � ∈ �l�h�. Given that the probabil-
ity of assigning an advertiser to slot j is P j�
v�, the total
expected valuation generated by all advertisers is

W = n
1−��Ql
∫ 1

0
v
m∑
j=1
�jP

j

l 
v�fl
v�dv

+n�Qh
∫ 1

0
v
m∑
j=1
�jP

j

h
v�fh
v�dv� (8)

Proposition 2. The efficient weighting factor ( for
l-type advertisers) is Ql/Qh.

Proposition 2 suggests that it is efficient to weight
advertisers’ bids by their expected CTRs (note that the
weighting factor pair 
Ql/Qh�1� is equivalent to the
pair 
Ql�Qh�). Such a weighting scheme is also effi-
cient if advertisers were to bid their true valuation.
In other words, the auctioneer can achieve efficiency
by weighting unit-price bids by expected CTRs as if
advertisers are bidding their true valuation, despite
that in our model advertisers generally do not bid

their true valuation-per-click. The reason for this lies
in the way l- and h-type advertisers are matched in
equilibrium. According to Lemma 1, an l-type adver-
tiser with valuation-per-click v is comparable with
an h-type advertiser with valuation-per-click wv. The
efficiency criterion requires comparable advertisers to
generate the same expected valuation. Hence, the effi-
cient weighting factor must be Ql/Qh.
It is worth noting that the efficient weighting fac-

tor is independent of the distribution of valuation-
per-click and that of CTR types. This feature makes
it straightforward to implement an efficient weight-
ing scheme: the auctioneer only needs to estimate the
expected CTR for each advertiser-keyword combina-
tion and use it to weight the advertiser’s unit-price
bid. Given that keyword auctions have already been
set up to accumulate CTR information for all adver-
tisers and all keywords, it is possible to estimate an
advertiser’s CTR on a particular keyword and that
estimation can be perfected over time.

4.3. Revenue-Maximizing Weighting Scheme
Another useful design criterion is revenue-maximiza-
tion. As the industry matures and the competition
for market shares settles, an efficient design toward
future growth becomes less appealing, and the auc-
tioneer’s objective is likely to transform from maxi-
mizing the “total pie” to maximizing the total revenue
from existing advertisers. Next, we examine how an
auctioneer should choose the weighting factor to max-
imize the expected revenue.
We define the revenue-maximizing weighting fac-

tor, w∗, as one that maximizes the total expected
revenue of the auctioneer. We can explicitly derive
the auctioneer’s expected revenue (") as (see the
appendix for details)

" = n
1−��Ql
∫ 1

0

m∑
j=1
�jP

j

l 
v�

(
v− 1− Fl
v�

fl
v�

)
fl
v�dv

+n�Qh
∫ 1

0

m∑
j=1
�jP

j

h
v�

(
v− 1−Fh
v�

fh
v�

)
fh
v�dv� (9)

In the above, the total expected revenue consists of
the expected revenue from l-type advertisers (the first
term) and the expected revenue from h-type adver-
tisers (the second term). Recall that P jl 
v� is an l-type
advertiser’s probability of winning the jth slot, and
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P
j

h
v� is an h-type advertiser’s probability. We inter-
pret the terms

Ql

[
v− 1− Fl
v�

fl
v�

]
and Qh

[
v− 1− Fh
v�

fh
v�

]
(10)

as l type’s and h type’s “revenue contribution” to
the auctioneer if they are assigned to a standard slot

� = 1�, respectively. Revenue contribution refers to
the revenue captured by the auctioneer, which is usu-
ally less than the total valuation created. The differ-
ence between advertisers’ revenue contribution and
their valuation for slots is considered to be the infor-
mational rent kept by the advertisers. According to
this interpretation, the total expected revenue can be
viewed as the total expected revenue contribution of
the winners at all slots. The concept of revenue con-
tribution is closely related to the concept of “virtual
valuation” introduced by Myerson (1981) in the opti-
mal auction setting. One difference is that we consider
revenue contribution across multiple slots, whereas
Myerson (1981) studies a single object.
The revenue-maximizing weighting factor can be

characterized by the first-order condition of the total
expected revenue with respect to the weighting factor.
Except in some special cases, the revenue-maximizing
weighting factor cannot be expressed in an explicit
form. Next, we focus on two issues regarding the
revenue-maximizing weighting factor. First, how is it
different from the efficient weighting factor? Second,
how is it affected by the underlying model primitives,
especially valuation-per-click distributions? We first
consider a setting in which the valuation-per-click is
independent of the CTR signal, so that the valuation-
per-click distributions for l- and h-type advertisers are
the same (commonly denoted as F 
v�).
We say a distribution function F 
v� is an increasing-

hazard-rate (IHR) distribution if its hazard rate
f 
v�/
1− F 
v�� increases in v throughout the support.
Many distributions, including uniform, normal, and
exponential, are IHR.

Proposition 3. If the valuation-per-click and CTR sig-
nals are independent, and F 
v� is IHR, then the revenue-
maximizing weighting factor w∗ must be higher than the
efficient weighting factor weff.

Proposition 3 implies that when the distributions of
valuation-per-click are the same across l- and h-type

advertisers, the revenue-maximizing weighting fac-
tor is generally inefficient and discriminates against
h-type advertisers relative to the efficient design. The
intuition is as follows. For any weighting factor less
than weff , if the valuation-per-click distribution is IHR,

Ql

[
v− 1− F 
v�

f 
v�

]
>Qh

[
wv− 1− F 
wv�

f 
wv�

]
�

for all v� (11)

In other words, for any weighting factor less than
weff , the revenue contribution of an l-type advertiser is
always higher than that of a comparable h-type adver-
tiser. Thus, the auctioneer can always earn a higher
revenue by raising w to allocate the slots more often
to l-type advertisers.
When l- and h-type advertisers have different

valuation-per-click distributions, however, the rev-
enue-maximizing weighting factor may or may not
be higher than the efficient weighting factor, as illus-
trated by the following example.
Example 1. Assume there is only one slot and the

valuation-per-click of l- and h-type advertisers are
uniformly distributed on �0� z� and �0�1�, respectively.
Let �= 0�5, Ql = 0�5, Qh = 1, and n= 5. We can explic-
itly solve the revenue-maximizing weighting factor
as w∗ = 1/
0�6z+ 0�8�, which is lower than weff = 0�5
when z > 2 and higher than weff when z < 2.
In the above example, when z increases, the

valuation-per-click distribution of the l-type advertis-
ers becomes less “tight.” As a result, they can claim
more informational rent and contribute less to the
total revenue. So the auctioneer should allocate the
slots less often to them by lowering the weighting
factor for l-type advertisers. When l-type advertisers’
valuation distribution is loose enough, the revenue-
maximizing weighting factor can be less than the effi-
cient weighting factor.
Example 1 highlights that it is not always best to

discriminate against advertisers with high expected
CTRs. This is fundamentally because advertisers’ rev-
enue contribution is determined both by expected
CTRs and valuation distributions. h-type advertisers
do not necessarily contribute less to the total rev-
enue than l-type advertisers who have the same total
valuation for slots, especially when the former have
“tighter” valuation distributions.
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5. Designing Differentiated
Minimum Bids

The optimal auction literature suggests that an opti-
mal design often involves imposing minimum bids
to exclude advertisers whose participation reduces
the auctioneer’s revenue. In our setting, the auc-
tioneer can impose differentiated minimum bids for
l- and h-type advertisers because of the information
on advertisers’ future CTRs.
We say a minimum bid for h-type advertisers is

more constraining than that for l-type advertisers if the
comparable h-type advertiser for the lowest partici-
pating l-type advertiser is excluded by the minimum
bids. We similarly define the case of a more constrain-
ing minimum bid for l-type advertisers. A pair of
minimum bids is equally constraining if neither bid is
more constraining.
Next we will focus on the scenario in which the

weighting factor for l-type advertisers is no higher
than that for h-type advertisers (Assumption 1) and
the minimum bid for h-type advertisers is equally or
more constraining (Assumption 2). Analyses of other
scenarios—where the weighting factor for l type is
higher, the minimum bid for l type is more constrain-
ing, or both—are analogous. We also assume that the
minimum bid for h-type advertisers is low enough
such that at least some l-type advertisers have compa-
rable participating h-type advertisers (Assumption 3).
This assumption excludes a trivial case in which l-
type advertisers and h-type advertisers each compete
with advertisers of their own type. Formally, these
assumptions are:

Assumption 1. w ≤ 1.
Assumption 2. wbl ≤ bh.
Assumption 3. bh <w.

As in §4, we first examine the impact of differenti-
ated minimum bids on equilibrium bidding and then
study the efficient and revenue-maximizing minimum
bid design.

5.1. Minimum Bids and Equilibrium Bidding
We conjecture that a pure-strategy equilibrium exists.
l-type advertisers’ equilibrium bidding function must
satisfy two criteria: (a) the lowest participating l-type
advertiser must have a valuation-per-click of bl and

bid his or her true valuation-per-click, (b) the equilib-
rium bidding function must be strictly increasing. The
criterion (a) is simply the consequence of minimum
bids, and the criterion (b) is required by the incen-
tive compatibility condition (see the online supple-
ment for a proof5). The criteria for h-type advertisers
are symmetric.
Because the minimum bid for h-type advertis-

ers is more constraining, some low-valuation l-type
advertisers cannot match any participating h-type
advertiser in the equilibrium score. But l-type adver-
tisers with high enough valuation-per-click can. We
call the lowest valuation-per-click for l-type adver-
tisers to match a participating h-type advertiser the
matching point for l-type advertisers, denoted as v0.
If the matching point equals one, no l-type adver-

tiser can match an h-type advertiser in equilibrium.
We will focus on the more interesting case of the
matching point less than one and assume the condi-
tion for that is satisfied (see Proposition 4 for such a
condition).
Will l-type advertisers with valuation-per-click

above the matching point match with their compara-
ble h-type advertisers as in the case of no minimum
bids? Lemma 2 shows that they do.

Lemma 2. Under Assumptions 1–3, an l-type adver-
tiser with valuation-per-click v above the matching point
matches an h-type advertiser with valuation-per-click wv
in equilibrium. Formally,

bh
wv�=wbl
v�� ∀v > v0� (12)

The question remains: where is the matching point?
One may conjecture that the matching point will be
the valuation-per-click of the l-type advertiser who
is comparable with the lowest participating h-type
advertiser. However, we show that this may be not
the case.
Remark 1 (Postponed Matching). If the mini-

mum bid for h-type advertisers is more constraining,
at least some low-valuation l-type advertisers will bid
lower scores than their comparable h-type advertisers.

5 Proofs of our results are contained in the appendix and in
an online appendix to this paper that is available on the
Information Systems Research website (http://isr.pubs.informs.org/
ecompanion.html).
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Suppose the opposite, that is, every l-type adver-
tiser will match the comparable h-type advertiser in
equilibrium whenever the latter is not excluded by
minimum bids. The first l-type advertiser to have
a comparable h-type advertiser is bh/w. By defini-
tion, bh/w is also the matching point. Because the
h-type advertiser with valuation-per-click bh must bid
the true valuation (by criterion (a)) and earn zero
payoff, the l-type advertiser must also bid his or
her true value (by Lemma 2) and earn zero payoff.
However, this cannot be an equilibrium because the
l-type advertiser can always earn a positive payoff
by bidding less. This contradiction leads us to con-
clude that the matching point must be higher than
bh/w. In other words, l-type advertisers avoid match-
ing their comparable h-type ones in equilibrium until
their valuation-per-click is high enough.
Given that the minimum bids are not equally con-

straining, the two bidding functions cannot both be
continuous. If both bidding functions were continu-
ous, by the definition of the matching point, the l-type
advertiser with valuation-per-click v0 must match the
h-type advertiser with valuation-per-click bh in equi-
librium scores and both must earn zero payoff. Our
previous argument shows that this cannot be an equi-
librium. The following proposition establishes the
equilibrium bidding with minimum bids.

Proposition 4. Under Assumptions 1–3, the equilib-
rium bidding functions are given by

b�
v� = v−
∫ v
b�

∑m
j=1 �jP

j
�
t� dt∑m

j=1 �jP
j
�
v�

�

∀v ∈ �b��1�� � ∈ �l�h�� (13)

where P jl 
v� and P jh
v� are defined in (6) and the one-on-
one winning probabilities for l- and h-type advertisers are
now

Gl
v�=
{
�Fh
bh�+ 
1−��Fl
v� for v ∈ �bl� v0�
�Fh
wv�+ 
1−��Fl
v� for v ∈ �v0�1��

(14)

Gh
v�=


�Fh
v�+
1−��Fl
v0� for v∈ �bh�wv0�
�Fh
v�+
1−��Fl

(
v

w

)
for v∈ �wv0�1��

(15)

The matching point v0 is determined by

w
∫ v0

bl

m∑
j=1
�jP

j

l 
t� dt =
∫ wv0

bh

m∑
j=1
�jP

j

h
t� dt� (16)

Figure 2 Equilibrium Bidding Functions with Minimum Bids
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Proposition 4 characterizes the equilibrium under a
weighted unit-price auction with differentiated mini-
mum bids. In Figure 2, we show an example of h-type
advertisers facing a more constraining minimum bid.
In this example, we let m = 1, n = 5, � = 0�5, Fl
v� =
Fh
v�= v, w= 0�5, bl = 0, and bh = 0�1. Figure 2 shows
the equilibrium scores for l- and h-type advertisers.
From Figure 2, l-type advertisers with valuation-

per-click lower than the matching point (0�26) bid
lower scores than any h-type advertisers. l-type
advertisers with valuation-per-click above the match-
ing point match with their comparable h-type adver-
tisers (with valuation-per-click between 0�13 and 0�5).
h-type advertisers with valuation-per-click higher
than 0�5 beat any l-type advertisers. h-type advertisers
with valuation-per-click lower than 0�13 bid higher
scores than l-type advertisers below the matching
point but bid lower than l-type advertisers above the
matching point. As in §4, the kinks are explained by
an abrupt increase/decrease in the number of com-
peting advertisers: the first kink in h-type advertisers’
equilibrium bidding function is because l-type adver-
tisers start matching h-type advertisers; the second is
because l-type advertisers can no longer match h-type
advertisers.
The example in Figure 2 confirms the “post-

poned matching” effect outlined in Remark 1. In this
example, l-type advertisers with valuation-per-click
between 0.2 and 0.26 are comparable with h-type
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advertisers with valuation-per-click between 0.1 and
0.13, but choose not to match the latter. Intuitively,
the minimum bid forces h-type advertisers with low
valuation-per-click to bid close to their true valuation.
Their comparable l-type advertisers, who do not face
such a constraint, have the option of bidding signif-
icantly lower than their true valuation, which leads
to low winning probabilities but high per-click pay-
offs. Bidding low (and not matching their comparable
h-type advertisers) is a dominant strategy for l-type
advertisers until their valuation-per-click reaches the
matching point.
The jump in l-type advertisers’ bidding function

at the matching point confirms our earlier argument
about discontinuity.6 At the matching point, l-type
advertisers’ bidding strategy changes from not match-
ing h-type advertisers to matching them. The fact the
two strategies require quite different unit-price bids
explains the jump in the equilibrium bids.
Proposition 4 has several implications. First, min-

imum bids exclude low-valuation advertisers and
force the participating ones, especially those whose
valuation is close to the minimum bids, to bid aggres-
sively. In the example, h-type advertisers between 0�1
and 0�13 bid higher than they would in the absence
of minimum bids (dashed lines indicate their equilib-
rium scores without minimum bids). Second, if the
minimum scores for two CTR-types are the same (in
other words, the minimum bid for h-type advertisers
is w times of that for l-type advertisers), two adver-
tisers who would tie without minimum bids remain
tying. This is also the reason we call such minimum
bids equally constraining. Third, when minimum bids
are not equally constraining, advertisers who face a
less constraining minimum bid may be better off by
choosing not to match their comparable advertisers
who face a more constraining minimum bid, a strat-
egy leading to lower winning odds but a higher per-
click payoff. However, advertisers whose valuation is
far above minimum bids will choose to match their

6 Strictly speaking, at the matching point, the l-type advertiser
is indifferent between bidding low and bidding high, and hence
could use a mixed strategy. To preserve a pure-strategy equilibrium,
in deriving Proposition 4, we assume that the h-type advertiser
always bids high. This assumption does not affect the equilibrium
outcome because the probability measure for an advertiser to be an
l-type advertiser with valuation-per-click v0 is virtually zero.

comparable advertisers, even if the minimum bids are
not equally constraining. This later finding is con-
sistent with Google’s claim that their differentiated
minimum-bids policy only affects a small percentage
of advertisers.7

As we have mentioned earlier, the intuition in
Proposition 4 carries over to other scenarios (h-type
advertisers receive a lower weighting factor, the min-
imum bid for l-type advertisers is more constraining,
or both). For example, when the minimum bid for
l-type advertisers is more constraining, h-type adver-
tisers will postpone matching their comparable l-type
advertisers, and the jump will occur in h-type’s equi-
librium bidding function.

5.2. Efficient Minimum Bids
We now consider the impact of minimum bids on
allocation efficiency. We call a pair of equally con-
straining minimum bids a uniform minimum score pol-
icy because they result in identical minimum scores
for l- and h-type advertisers. We say a keyword auc-
tion is weakly efficient if it allocates assets in a way
that maximizes the total expected valuation of all
participating advertisers. The notion of weak effi-
ciency we use is similar to the one discussed by Mark
Armstrong (2000). Weak efficiency is different from
“strong” efficiency in that weak efficiency concerns
the total valuation of participating bidders, whereas
strong efficiency concerns the total valuation of all
bidders and the auctioneer. Weak efficiency is a nec-
essary condition for strong efficiency.
If the auctioneer uses a uniform minimum score

policy, all participating l-type advertisers match their
comparable h-type advertisers in equilibrium. Hence,
if the weighting factor is Ql/Qh, the auction is still
efficient according to the same argument in Proposi-
tion 2. In fact, such designs are also necessary for the
auction to be weakly efficient.

Proposition 5. A weighted unit-price auction is
weakly efficient if and only if the auctioneer uses the effi-
cient weighting factor and a uniform minimum score.

7 Google stated in its official blog that the introduction of a differ-
entiated minimum-bids policy “will affect a very small portion of
advertisers � � � . However, those who may be providing a low qual-
ity user experience will see an increase in their minimum bids”
(Google 2006).
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Proposition 5 provides a theoretical justification
for using differentiated minimum bids. A uniform
minimum-score rule implies that auctioneers should
set high minimum unit prices for advertisers with low
expected CTRs. This is consistent in principle with
Google’s recently adopted differentiated minimum-
bid practices.
Once again, a uniform minimum-score policy is

easy to implement because it does not require know-
ing the distribution of advertisers’ valuation-per-click.
Proposition 5 shows that weighting advertisers’ unit-
price bids by their expected CTRs, together with
a simple uniform minimum-score rule, allows the
auctioneer to achieve efficiency among participating
advertisers.

5.3. Revenue-Maximizing Minimum Bids
In a manner similar to the one used in the derivation
of (9), we can explicitly evaluate the expected revenue
of the auctioneer with minimum bids:

" = n
1−��Ql
∫ 1

bl

m∑
j=1
�jP

j

l 
v�

(
v− 1−Fl
v�

fl
v�

)
fl
v�dv

+n�Qh
∫ 1

bh

m∑
j=1
�jP

j

h
v�

(
v− 1−Fh
v�

fh
v�

)
fh
v�dv� (17)

A pair of minimum bids is revenue-maximizing if
this pair is chosen to maximize (17). In the appendix
we characterize the revenue-maximizing minimum
bid policy, using a set of first-order conditions. The
revenue-maximizing minimum bid policy can be
computed numerically. In general, when choosing the
revenue-maximizing minimum bids, the auctioneer
needs to consider both the exclusion effect and the dis-
tortion effect. The exclusion effect is well-known in the
auction design literature. A minimum bid excludes
advertisers whose valuation-per-click is lower than
the minimum bid, and forces the remaining adver-
tisers to bid higher than they would in the absence
of such a minimum bid. The distortion effect is new,
however. We have shown earlier that when the min-
imum bid for h-type advertisers is more constrain-
ing, some l-type advertisers will bid lower scores than
their comparable h-type advertisers.
The condition for revenue-maximizing minimum

bids in our setting is generally different from the

“exclusion principle” in standard auctions. The exclu-
sion principle requires that the revenue-maximizing
minimum bid should be chosen to admit only the
advertisers with positive revenue contribution. In our
setting, this would require the revenue-maximizing
minimum bids to satisfy, respectively,

bl−
1− Fl
bl�
fl
bl�

= 0 and bh−
1− Fh
bh�
fh
bh�

= 0� (18)

The conditions in (18) are not revenue-maximizing in
our setting, however. They ignore the fact that in our
setting, minimum bids also cause a distortion effect
that has revenue consequences.
The revenue-maximizing minimum bids generally

do not have a uniform score either. Intuitively, when
we restrict to a uniform minimum-score policy, the
distortion effect does not exist. As a result, the
revenue-maximizing minimum bid policy should sim-
ply exclude advertisers with a negative revenue con-
tribution, that is, one that satisfies (18). However,
the minimum bid pair determined by (18) seldom
has a uniform minimum score. For example, if the
valuation-per-click distributions for l- and h-type
advertisers are the same, conditions in (18) lead to
the same minimum bid for l- and h-type advertisers,
implying different minimum scores for l- and h-type
advertisers.
We summarize the previous observations in the fol-

lowing remark.
Remark 2. The revenue-maximizing minimum bid

policy is generally not a uniform minimum-score pol-
icy or one resulting from a traditional exclusion prin-
ciple (as determined by (18)).
We conclude the aforementioned discussion with

an example that illustrates how the revenue-maxi-
mizing minimum bids in our setting differ from a
uniform minimum-score policy and from those rec-
ommended by the auction design literature. The fol-
lowing example also shows that the auctioneer can
achieve a higher revenue with a revenue-maximizing
minimum bid policy.
Example 2. Assume there are five advertisers and

one slot. Let � = 0�5, Ql = 0�8, Qh = 1, w = 0�8,
Fh
v� = v, and Fl
v� = 2v − v2. We calculate the min-
imum bids and expected revenues under three poli-
cies: a revenue-maximizing uniform-score policy, a
policy using the exclusion principle, and a revenue-
maximizing policy (see Table 1).
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Table 1 Comparison Between Different Minimum Bid Policies

Minimum bid policy (bl � bh) Total expected revenue

Revenue-maximizing �0�481�0�385� 0�5211
uniform score

Traditional exclusion principle �0�333�0�500� 0�5213
Revenue-maximizing �0�334�0�615� 0�5309

6. Comparison with Fixed-Payment
Auctions

Given the results on the efficient and revenue-maxi-
mizing designs, we are now able to compare weighted
unit-price auctions with traditional auction formats
where bidders bid fixed payments. Note that in
fixed-payment auctions, winners pay a fixed payment
upfront, whereas in unit-price auctions, winners pay
ex post based on realized outcomes. In this sense,
advertisers bear less risk in unit-price auctions than
in fixed-payment auctions. The risk-sharing feature
of unit-price auctions is considered advantageous, for
example, by McAfee and McMillan (1986) in the study
of procurement auctions. Here we move beyond risk-
sharing advantage and focus on comparing weighted
unit-price auctions with fixed-payment auctions on
allocation efficiency and revenue.
To make a fair comparison, we extend the stan-

dard fixed-payment auction to a multiobject setting.
We define the generalized first-price auction as one sat-
isfying the following conditions: (1) Advertisers bid
their total willingness-to-pay b for the first slot. (2)
Slots are assigned based on the ranking of bids. (3) If
an advertiser wins the jth slot, he/she will pay �jb.
Given our model setting, the probability of an

advertiser’s expected total valuation for the first slot
being less than x is

�Fh

(
x

Qh

)
+ 
1−��Fl

(
x

Ql

)
� (19)

When there is only one slot, the generalized first-
price auction reduces to a standard first-price auction
in which advertisers’ valuation for the slot is dis-
tributed according to (19). Such a standard auction is
known to be efficient. In fact, the generalized first-
price auction is also efficient. This is because, as in
standard auctions, advertisers’ bids are monotonically
increasing in their valuation (for the first slot) such
that slots are allocated efficiently.

Recall that in efficient weighted unit-price auctions,
an advertiser is assigned a slot if and only if the
advertiser has the highest total valuation for the slot
among those who have not been assigned a slot
(Proposition 2). This implies that efficient weighted
unit-price auctions allocate the same way as general-
ized first-price auctions and thus generate the same
expected revenue to auctioneers. Thus, see the follow-
ing proposition.

Proposition 6. The efficient weighted unit-price auc-
tion achieves the same efficiency and expected revenue as a
generalized first-price auction.

Because the efficient weighted unit-price auction
generates the same expected revenue as the gen-
eralized first-price auctions (Proposition 6) and the
revenue-maximizing weighted unit-price auction can
generate more revenue than the efficient weighted
unit-price auction (Proposition 3), we immediately
have the following corollary.

Corollary 1. Revenue-maximizing weighted unit-
price auctions generate more revenue than generalized first-
price auctions.

According to the optimal mechanism design litera-
ture, the standard auctions (with an appropriately set
reserve price) can achieve the highest revenue among
all mechanisms in assigning a single-object setting.
The Corollary 1 indicates, however, that weighted
unit-price auctions can achieve even higher revenue.
The reason lies in that weighted unit-price auctions
allow the auctioneer to discriminate advertisers based
on information about their expected CTRs, which is
not considered in the standard mechanism design set-
ting. Therefore, this corollary illustrates that ex ante
information on bidders’ outcome-generating potential
can be exploited to enhance the auctioneer’s revenue.
We shall note that Proposition 6 and Corollary 1

are obtained with the assumption that the auc-
tioneer has the same information on advertisers’
future CTRs as advertisers themselves do. In key-
word auctions, because advertising providers have
full access to advertisers’ CTR history, we expect
advertisers’ information advantage on future CTRs to
be small, especially after advertisers have had a long
enough history with the advertising provider. How-
ever, in other settings where auctioneers have substan-
tially less information on bidders’ future outcomes
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than bidders themselves, fixed-payment auctions may
achieve higher allocation efficiency and revenue than
weighted unit-price auctions.

7. Discussion
In this section, we consider relaxing some of the
model assumptions.

7.1. Quality of CTR Information
Given the importance of the information on advertis-
ers’ future CTRs, a natural question is how the qual-
ity of such information affects our results, which we
attempt to address here by perturbing the informa-
tion quality. One way to do this is to assume that
under perfect information, advertisers with high and
low expected CTRs can be correctly categorized into
h-type and l-type, whereas under imperfect informa-
tion some of the advertisers may be miscategorized.
Such miscategorization maintains the same overall
expected CTR but causes the (unbiased) expected
CTR for the h-type group to be lower and for the
l-type group to be higher; more so as the information
quality worsens. By this notion of information quality,
we can say one information set ($) is less informative
than another ($ ′) if

Q′
l ≥Ql and Q′

h ≤Qh� (20)

where superscripts denote parameters under informa-
tion set $ ′. In the extreme case, when the CTR sig-
nal is completely uninformative, there is no difference
between the expected CTRs of the h-type group and
those of the l-type group.
Obviously, our results on equilibrium bidding hold

under different information quality in the aforemen-
tioned sense. The efficient weighting factor for l-type
advertisers is higher under lower quality information
because of a smaller difference between h type’s and
l type’s expected CTRs. The miscategorization may
cause the advertising provider to allocate advertising
slots to low valuation advertisers even though higher
valuation ones are available, and thus there is a loss
of efficiency. The total expected revenue is generally
lower because of the decrease in the total valuation
created. In sum, deterioration in the quality of infor-
mation on advertisers’ future CTRs generally reduces
the efficiency and the expected revenue of weighted
unit-price auctions. The following example illustrates
such results.

Table 2 Impact of Information Quality

Total expected Total expected
weff valuation w ∗ revenue

Perfect info 0.50 0.68 0.80 0.44
Imperfect info 0.63 0.63 0.85 0.43

Example 3. Assume there is one slot, n = 5, and
Fl
v� = Fh
v� = v (uniform distribution). Let � = 0�5,
Ql = 0�5, and Qh = 1 under perfect information, and
� = 0�45, Ql = 0�591, and Qh = 0�944 under imper-
fect information (corresponding to 10% of low-CTR
advertisers and 20% of high-CTR advertisers being
mis-categorized). Table 2 summarizes the changes in
efficiency and total expected revenue.

7.2. Multiple CTR-Types
The basic intuition of our main results holds for
multiple signal types (see the online supplement for
a formal analysis). Suppose there are k CTR-types,
indexed by � = 1�2� � � � � k, and the weighting fac-
tor for a CTR-type � is w�. We can show, as in
Lemma 1, that an advertiser with a CTR-type �1 and
valuation-per-click v ties with an advertiser with a
CTR-type �2 and valuation-per-click w�1v/w�2 in equi-
librium. We can obtain k equilibrium bidding func-
tions in the same way as in Proposition 1, one for
each type. Analogous to the two-type case, it is still
efficient to weight advertisers’ bids by their expected
CTRs and to impose a uniform score across differ-
ent CTR-types. The revenue-maximizing weighting
scheme and minimum bid policy are more complex
in the multiple CTR-type case because of additional
undetermined design parameters; but the basic intu-
ition follows through. For example, the minimum bid
policy remains different from a uniform-score policy
and from a policy implied by the traditional exclusion
principle.

8. Conclusion
Information technology gives us the ability to track
online behaviors in unprecedented detail. For online
advertising, this means that advertisers can monitor
how many customers click on their advertisements
and how many end up making a purchase. This
ability not only enables new outcome-based pricing
(also known as “pay-for-performance”) models but
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also allows advertising providers to accumulate infor-
mation on advertisers’ outcome-generating potential.
Within this context, we examine how information
on advertisers’ CTRs can be used in the design of
keyword auctions. We evaluate two ways of incor-
porating advertisers’ CTR information into the key-
word auction design: by assigning different weighting
factors for advertisers with different expected CTRs
and by imposing different minimum bids for them.
Edelman et al. (2007) and Varian (2007) note that
equilibria under rank-by-price and rank-by-price ×
CTR rules would be different, but do not address the
impact of different ranking rules on equilibrium out-
come. This paper addresses this question, and also
a more general question of how to choose ranking
rules and minimum bid policies to best utilize the
ex ante information on advertisers’ future CTRs. We
study the impact of weighting schemes and differen-
tiated minimum bid policies and how they should be
configured to maximize allocation efficiency or total
expected revenue.
Although we use pay-per-click keyword auctions

as a specific context for our discussion, our model
framework and implications can be applied to other
outcome-based pricing settings such as pay-per-call
and pay-per-purchase advertising auctions. The suc-
cess of pay-per-click advertising on search engines
has inspired innovations in other areas. For example,
Google introduced keyword-auction-like mechanisms
to television, online video, and mobile phone adver-
tising. The intuition obtained in this paper can poten-
tially apply to these application areas as well.

8.1. Managerial Implications
Our analysis has several implications. First, we gain
insight on how weighting schemes and differentiated
minimum bids affect equilibrium bidding. We demon-
strate that the weighting scheme determines how
advertisers with different expected CTRs match in
equilibrium: a low-CTR advertiser ties in equilibrium
with a high-CTR advertiser when the two have the
same weighted valuation-per-click—that is, valuation-
per-click times the weighting factor. For example, if
low-CTR advertisers receive a weighting factor of
w, a low-CTR advertiser with valuation-per-click one
matches a high-CTR advertiser with valuation-per-
click w in equilibrium.

As in classic auctions, minimum bids exclude low-
valuation advertisers and force others, especially
those whose valuation is near minimum bids, to
bid closer to their true valuation. Minimum bids
in our setting have other effects: When minimum
bids are not equally constraining, they distort equi-
librium matching between low- and high-CTR adver-
tisers and cause a jump in the less-constrained type’s
equilibrium bidding. Intuitively, the less-constrained
type avoids competing with the more-constrained
type, who bids ultra-aggressively because of mini-
mum bids. But for advertisers with valuation well-
above the minimum bids, the less-constrained type
matches the more-constrained type the same way as
the no-minimum-bids case. The jump reflects a transi-
tion from avoiding matching to matching among the
less-constrained advertisers. These insights, together
with ones on the weighting schemes, help advertis-
ing providers understand the impact of their auction
rules on advertisers. They also provide guidelines for
advertisers on how to bid optimally.
Second, the efficient keyword auction design is

remarkably simple. It involves weighting advertis-
ers’ pay-per-click bids with their expected CTRs, and
requires the same minimum score for all advertis-
ers. The former implies lower weighting factors for
advertisers with lower expected CTRs. The latter
implies higher minimum bids for advertisers with
lower expected CTRs. These appear to be consistent
with designs used in practice. For example, Google
has been using historical CTRs as weighting factors
and requiring higher minimum bids for advertisers
with low historical CTRs. As we have argued in §7,
the quality of such estimation affects the level of effi-
ciency that keyword auctions can achieve, thus, our
results draw attention to the importance of estimat-
ing advertisers’ future CTRs. Keyword advertising
providers may improve the quality of such estimation
by acquiring additional information on advertisers’
future CTRs and refining their estimation techniques.
Third, we characterize the revenue-maximizing

weighting scheme and minimum-bid policy. The
revenue-maximizing weighting scheme may favor or
disfavor low-CTR advertisers relative to the efficient
weighting scheme. If low- and high-CTR advertisers
have the same valuation-per-click distribution, adver-
tising providers obtain the highest expected revenue
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by favoring low-CTR advertisers—the disadvantaged
type. But if low-CTR advertisers have a less tight val-
uation distribution than high-CTR ones, the revenue-
maximizing weighting scheme may favor low-CTR
advertisers less, possibly even disfavoring them. Such
results suggest that we cannot automatically assume
that low-CTR advertisers should be favored in a
revenue-maximizing design.

8.2. Relation to Other Research
This research may have implications for online pro-
curement auctions, which have gained some accep-
tance in recent years (Snir and Hitt 2003). One of the
challenges for online procurement auction designers
is to incorporate non-price dimensions such as qual-
ity, delivery, and services into auction mechanisms
(Beall et al. 2003). Weighted unit-price auctions may
provide a framework to do that. Of course, further
research is needed to account for special features in
procurement settings, such as the cost associated with
switching suppliers and the fact that suppliers may
misrepresent their nonprice attributes.
Our research may also have implications for

posted-schedule pricing of information goods and
services. A variety of information goods and ser-
vices such as radio spectrum, network bandwidth,
and Internet cache are resources allocated for exclu-
sive use, the use of which may generate trackable
outcomes (e.g., number of packets transmitted). Infor-
mation system researchers have proposed several
ways to price these resources (Bapna et al. 2005,
Hosanager et al. 2005, Sundararajan 2004). For exam-
ple, Sundararajan (2004) suggests a nonlinear price
schedule that includes a fixed fee and a usage-based
fee. Our results may add a new direction for pricing
these goods and services, that is, to charge buyers by
realized outcomes (such as usage) and differentiate
pricing schedules for buyers with different outcome-
generating potential (such as usage rates). It will be
interesting to compare such an approach to existing
ones in the optimal pricing literature.

8.3. Limitations and Future Research
This research has certain limitations. We consider
CTRs as endowed attributes, whereas in reality,
advertisers may manipulate their CTRs to gain favor-
able weighting factors. If the manipulation perma-
nently improves an advertiser’s CTR (such as by

improving the presentation of the advertisement),
then our results apply to the postmanipulation peri-
ods. Advertising providers may want to encourage
such “manipulation.” On the other hand, manipu-
lation that temporarily inflates an advertiser’s CTR
may be discouraged by a carefully structured CTR-
estimation method. For example, manipulation that
lasts one period does not have much impact on the
weighting factor in a weighting system that empha-
sizes long-term CTR history. However, coping with
various forms of manipulation remains an open issue
in keyword auction designs.
Several other issues may be interesting for future

research. First, it is not entirely clear whether key-
word auctions perform better than alterative mech-
anisms such as posted-price. A commonly accepted
argument holds that auctions are more suitable than
posted-price when bidders’ valuation for goods and
services is more uncertain (Pinker et al. 2003). This
appears to be a plausible explanation for the pop-
ularity of auctions in selling keyword advertising
slots, given sellers’ lack of knowledge on the potential
value of keyword advertising slots. Second, an impor-
tant issue related to this study is how to estimate
advertisers’ future CTRs. Third, it would be inter-
esting to examine how competition from other key-
word advertising providers affects the efficient and
revenue-maximizing designs.
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Appendix
Throughout the appendix, we denote

&�
v�≡
m∑
j=1
P
j
�
v��j � (21)

Proof of Lemma 1. Consider an h-type advertiser with
valuation-per-click wv who bids wb and an l-type advertiser
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with v who bids b. Both advertisers get a score wb, and their
payoff functions are

Ul
v� b�=Ql
v− b�
m∑
j=1
�jPr(wb ranks jth)� (22)

Uh
wv�wb�=Qh
wv−wb�
m∑
j=1
�jPr(wb ranks jth)� (23)

It is easy to establish that

Uh
wv�wb�=
wQh
Ql

Ul
v� b�� (24)

For bl
v� and bh
v� to be equilibrium bidding functions,
at any v, bl
v� must maximize Ul
v� b� and bh
v� must max-
imize Uh
v� b�. So, (24) suggests that if bidding b is the best
for an l-type advertiser with valuation-per-click v, bidding
wb must be the best for an h-type advertiser with valuation-
per-click wv, which implies bh
wv� equals wbl
v�.

Proof of the Revenue Equivalence Between First- and
Second-Score Weighted Unit-Price Auctions. First, we
show that the same relationship as in (3) holds between l-
and h-type advertisers’ bidding functions under the second-
score setting. To see, we denote sj(n−1 as the random variable
for jth highest score among n−1 advertisers in equilibrium.
Consider an h-type advertiser with valuation-per-click wv
bidding wb and an l-type advertiser with valuation-per-
click v bidding b. So both advertisers get a score s =wb.
Uh
wv�wb�

=Qh
[ m∑
j=1
�jPr(wb ranks jth)
wv−E�sj(n−1 �sj(n−1≤s<sj−1(n−1��

]

and

Ul
v� b�

=Ql
[ m∑
j=1
�jPr
wb ranks jth)

(
v− 1

w
E�sj(n−1 �sj(n−1≤s<sj−1(n−1�

)]
�

Similar to the proof of Lemma 1, we have Uh
wv�wb� =

wQh/Ql�Ul
v� b� and bh
wv� = wbl
v�. bh
wv� = wbl
v�
implies the l-type advertiser with valuation-per-click v and
the h-type advertiser with wv will tie in both first- and
second-score weighted unit-price auctions. Therefore, first-
and second-score weighted unit-price auctions allocate the
slots in the same way. By the revenue equivalence theo-
rem (e.g., Proposition 14.1 in Krishna 2002), the two formats
must generate the same amount of revenue.

Proof of Proposition 1. Denote the inverse bidding
functions as b−1l 
b� and b−1h 
b�, respectively, which are
strictly increasing given the monotonicity of the bid-
ding functions. Lemma 1 implies that b−1h 
wb� = wb−1l 
b�
for b ∈ �0� bl
1��. Substituting this into (22) and (23), we
can uniformly write the payoff functions as U�
v� b� =

Q�
v − b�&�
b
−1
� 
b��, where &�
v� is defined in (21). We

denote

V�
v�≡U�
v� b�
v��=Q�
v− b�
v��&�
b−1� 
b�
v��� (25)

as the equilibrium payoff of an advertiser with valuation-
per-click v.

dV�
v�

dv
= +U�
v� b�
v��

+v
+ +U�
v� b�
v��

+b

db�
v�

dv

= +U�
v� b�
v��

+v
=Q�&�
v��

where the second equality is due to +U�
v� b�
v��/+b = 0
(the first-order condition). Applying the boundary condi-
tion V�
0�= 0, we get

V�
v�=Q�
∫ v

0
&�
t� dt� (26)

Combining (25) (note b−1� 
b�
v�� = v) and (26), we can
solve the equilibrium bidding function as b�
v� = v −∫ v
0 &�
t� dt/&�
v�.
Now we show that db�
v�/dv > 0. Note that db�
v�/dv =

&′�
v�
∫ v
0 &�
t� dt/&

2
�
v�. The sign of db�
v�/dv is solely deter-

mined by that of &′�
v�. It is sufficient to show &′�
v� > 0, or∑m
j=1 �jP

j′
� 
v� > 0.

P
j′
� 
v� =

(
n− 1
n− j

)
G�
v�

n−j−1
1−G�
v��j−2

· �
n− j�− 
n− 1�G�
v��G′
�
v�� (27)

Notice that P 1′� 
v�≥ 0 and Pn′� 
v�≤ 0 for all v; P j′� 
v� (1<
j < n) crosses 0 only once from positive to negative on

0�1�. The crossing point, vcj , is the solution to G�
vcj � =

n− j�/
n− 1�. It is clear that 0 < vcn−1 < · · · < vc3 < vc2 < 1.
Thus, for a given v ∈ 
0�1�, there exists jv ∈ �1�2� � � � �n− 1�
such that

P
j′
� 
v� > 0� for j = 1� � � � � jv� and

P
j′
� 
v�≤ 0� for j = jv + 1� � � � �n�

(28)

Let �m+1 = �m+2 = · · · = �n = 0. We have
∑m
j=1 �jP

j′
� 
v� =∑n

j=1 �jP
j′
� 
v� > �jv

∑n
j=1 P

j′
� 
v� = 0, where the inequality is

due to �1 ≥ �2 ≥ · · · ≥ �n and (28), and the last equality is
due to the fact that

∑n
j=1 P

j
�
v�= 
G�
v�+ 1−G�
v��n−1 = 1.

Proof of Proposition 2. First note that Gh
wv� =
Gl
v� and dGh
v�/dw�wv = −

1−��/�w�
fl
v�/fh
wv�� ·

dGl
v�/dw�. We can establish

d&h
v�

dw

∣∣∣∣
wv

=−1−�
�w

fl
v�

fh
wv�

d&l
v�

dw
� (29)

Using the same technique in Proof of Proposition 1, we can
show d&l
v�/dw > 0. Taking the first-order derivative of (8)
with respect to w yields


1−��Ql
∫ 1

0
v
d&l
v�

dw
fl
v�dv+�Qh

∫ 1

0
v
d&h
v�

dw
fh
v�dv� (30)
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If w ≤ 1, noting d&h
v�/dw = 0 for v > w, we can re-
organize (30) as


1−��Ql
∫ 1

0
v
d&l
v�

dw
fl
v�dv+�Qh

∫ w

0
v
d&h
v�

dw
fh
v�dv

= 
1−��Ql
∫ 1

0
v
d&l
v�

dw
fl
v�dv

− 
1−��wQh
∫ 1

0
v
d&l
v�

dw
fl
v�dv

= 
1−��
Ql −wQh�
∫ 1

0
v
d&l
v�

dw
fl
v�dv� (31)

where the second equality is due to integration by sub-
stitution and (29). Because d&l
v�/dw > 0, the above first-
order derivative is positive if w < Ql/Qh and negative if
w>Ql/Qh. So w = Ql/Qh maximizes the social welfare
among all w ∈ �0�1�.
By a similar logic, we can verify w > 1 cannot maximize

the social welfare. So, weff =Ql/Qh.
Derivation of Expected Revenue. The expected payment

from an advertiser is equal to the advertiser’s total expected
valuation upon winning minus the advertiser’s expected
payoff:

Q�v&�
v�−V�
v�=Q�
[
v&�
v�−

∫ v

0
&�
t� dt

]
� (32)

where the equality is due to (26).
The expected payment from one advertiser (with prob-

ability � being h-type and with probability 
1 − �� being
l-type) is

�E�Qhv&h
v�−Vh
v��+ 
1−��E�Qlv&l
v�−Vl
v��

= �Qh
∫ 1

0

[
v&h
v�−

∫ v

0
&h
t� dt

]
fh
v�dv

+ 
1−��Ql
∫ 1

0

[
v&l
v�−

∫ v

0
&l
t� dt

]
fl
v�dv

= �Qh
∫ 1

0
&h
v�

[
v− 1− Fh
v�

fh
v�

]
fh
v�dv

+ 
1−��Ql
∫ 1

0
&l
v�

[
v− 1− Fl
v�

fl
v�

]
fl
v�dv�

The total expected revenue from all advertisers is n times
the aforementioned.

Proof of Proposition 3. Taking the first order deriva-
tive of the expected revenue (9) with respect to w yields

d"

dw
= 
1−��Ql

∫ 1

0

d&l
v�

dw

(
v− 1− Fl
v�

fl
v�

)
fl
v�dv

+�Qh
∫ 1

0

d&h
v�

dw

(
v− 1− Fh
v�

fh
v�

)
fh
v�dv�

We only need to check the sign of d"/dw for 0 < w ≤
Ql/Qh. For 0<w ≤Ql/Qh,

d"

dw
= 
1−��Ql

∫ 1

0

d&l
v�

dw

(
v− 1− Fl
v�

fl
v�

)
fl
v�dv

+�Qh
∫ w

0

d&h
v�

dw

(
v− 1− Fh
v�

fh
v�

)
fh
v�dv

= 
1−��Ql
∫ 1

0

d&l
v�

dw

(
v− 1− Fl
v�

fl
v�

)
fl
v�dv

−
1−��Qh
∫ 1

0

d&l
v�

dw

(
wv− 1− Fh
wv�

fh
wv�

)
fl
v�dv

= 
1−��
∫ 1

0

d&l
v�

dw
fl
v�

[
Ql

(
v− 1− Fl
v�

fl
v�

)

−Qh
(
wv− 1− Fh
wv�

fh
wv�

)]
dv (33)

= 
1−��
∫ 1

0

d&l
v�

dw
fl
v�

[
v
Ql −Qhw�

+Qh
1− Fh
wv�
fh
wv�

−Ql
1− Fl
v�
fl
v�

]
dv� (34)

where the first equality is because for v >w, d&h
v�/dw= 0
and the second equality is due to (29).
Note that d&l
v�/dw > 0 by the proof of Proposition 2.

Clearly, for 0 < w ≤ Ql/Qh, v
Ql − Qhw� ≥ 0. By
the IHR property (note that Fl
·� = Fh
·� = F 
·�),
Qh

1− Fh
wv��/fh
wv�� − Ql

1− Fl
v��/fl
v�� > 0. So, (34)
is greater than 0, which implies w∗ >Ql/Qh.

Proof for Lemma 2. We suppose there exists a map-
ping -( 
v0�1�→ �bh�1� such that wbl
v�= bh
-
v��. That is,
an l-type advertiser with v will tie with an h-type adver-
tiser -
v� in equilibrium. Similarly, we define P j�
v� ≡(
n−1
n−j

)
�G�
v��

n−j �1 − G�
v��
j−1 and &�
v� ≡

∑m
j=1 P

j
�
v��j� � ∈

�l�h�, where

Gl
v�= �
1−��Fl
v�+�Fh
-
v���� for all 1≥ v > v0�
Gh
v�= �
1−��Fl
-−1
v��+�Fh
v��� for all -
1�≥v>-
v0��

We can then solve the equilibrium bidding for each adver-
tiser type as

bl
v�= v−
U 0
l /Ql +

∫ v
v0
&l
t� dt

&l
v�
� (35)

bh
v�= v−
U 0
h /Qh+

∫ v
-
v0�

&h
t� dt

&h
v�
� (36)

where U 0
l and U

0
h are equilibrium payoff of an l-type adver-

tiser with valuation-per-click v0 and equilibrium payoff of
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an h-type advertiser with valuation-per-click -
v0�, respec-
tively. By wbl
v�= bh
-
v��,

w

[
v− U

0
l /Ql +

∫ v
v0
&l
t� dt

&l
v�

]

=-
v�− U
0
h /Qh+

∫ -
v�
-
v0�

&h
t� dt

&h
-
v��

=-
v�− U
0
h /Qh+

∫ v
v0
&l
t�-

′
t� dt

&l
v�
� (37)

where the second step is due to &l
v�= &h
-
v��. Multiply-
ing both sides of (37) by &l
v� and taking the first-order
derivative with respect to v, we have w�v&′l + &l − &l� =
-′&l +&′l-−&l-′, which implies -
v�=wv.

Proof of Proposition 4. Our analysis in §5.1 implies
that an l-type advertiser with v ∈ �bh�v0� participates
but cannot compete with any participating h-type adver-
tisers. The probability for such an l-type advertiser to
beat any other advertiser is Gl
v� = �Fh
bh� + 
1 − ��Fl
v�.
For an l-type advertiser with v ∈ �v0�1� (who com-
petes with both l-type advertisers and h-type advertisers),
Gl
v�= �Fh
wv�+ 
1− ��Fl
v�. Similarly, we can obtain the
probability of beating any other advertiser for h-type adver-
tisers with valuation-per-click in �bh�wv0� (who beat any
l-type advertisers in �bh�v0� but none of the l-type advertis-
ers in �v0�1�), in �wv0�w� (who compete both with h-type
advertisers and l-type advertisers), and in 
w�1� (who beat
any l-type advertisers). The equilibrium winning and the
equilibrium bidding functions follow naturally. The only
undetermined variable is v0. Notice that Lemma 2 implies
for any v ∈ �v0�1�,

Vh
wv� = Qh
wv− bh
wv��&h
wv�
= Qhw
v− bl
v��&l
v�=

wQh
Ql

Vl
v�� (38)

Meanwhile, we have (by a similar process in the proof of
Proposition 1)

Vl
v0�=Ql
∫ v0

bl

&l
t� dt and

Vh
wv0�=Qh
∫ wv0

bh

&h
t� dt�

(39)

Evaluating (38) at v = v0 and substituting (39) into (38),
we immediately have w

∫ v0
bl
&l
t� dt =

∫ wv0
bh
&h
t� dt, which

determines v0. We can verify that the bidding strate-
gies obtained in the aforementioned process constitute an
equilibrium.

Proof of Proposition 5. In the following proof, we only
consider the nontrivial case in which at least some partic-
ipating l-type advertisers can match h-type ones in valua-
tion; i.e., bh <Ql/Qh.
(Only-if part): We first show that a weighted unit-price

auction with unequally constraining minimum bids is ineffi-
cient. When the minimum bid for h-type advertisers is more

constraining, any weighting factor that results in a match-
ing point being one for l-type advertisers is not efficient,
because an l-type advertiser with valuation-per-click one
would lose to an h-type advertiser with valuation-per-click
bh despite having higher expected valuation. If the match-
ing point is less than one, by Lemma 2, an l-type advertiser
with valuation-per-click v > v0 will tie with an h-type adver-
tiser with valuation-per-click wv (provided that wv< 1). By
the same argument in Proposition 2, the allocation among
these advertisers is efficient only if the weighting factor is
Ql/Qh. However, if the weighting factor is Ql/Qh and the
minimum bid for h-type advertisers is more constraining,
by Proposition 4, h-type advertisers with valuation-per-click
between bh and wv0 are unmatched by any l-type adver-
tisers, implying that the h-type advertisers are inefficiently
favored under the current minimum bids. So, it is not possi-
ble to achieve allocation efficiency with a more constraining
minimum bid for h-type advertisers. By a similar argument,
we can show that nor is it possible with a less constraining
minimum bid for h-type advertisers.
One cannot achieve efficiency with equally constraining

minimum bids but an inefficient weighting factor either. If
minimum bids are equally constraining, an l-type adver-
tiser with valuation-per-click v always ties with an h-type
advertiser with valuation-per-click wv. By the argument in
Proposition 2, one can achieve efficiency only by setting the
weighting factor to Ql/Qh. In sum, a weighted unit-price
auction is weakly efficient only if the weighting factor is
efficient and minimum bids are equally constraining.
Derivation of Revenue-Maximizing Minimum Bids.

Define J�
v�=v−
1−F�
v��/f�
v� and &l
v−0 �≡ limv→v−0 &l
v�= &h
bh�. Taking the partial derivative of (17) with respect to
bh and bl, respectively, we obtain the first-order conditions
(note that v0 is a function of bh and bl)


1−��Ql&l
v−0 �Jl
v0�fl
v0�
+v0
+bh

+ 
1−��Ql
∫ v0

bl

d&l
v�

dbh
Jl
v�fl
v�dv

− 
1−��Ql&l
v0�Jl
v0�fl
v0�
+v0
+bh

−�Qh&h
bh�Jh
bh�fh
bh�

+�Qh
∫ wv0

bh

d&h
v�

dv0

+v0
+bh

Jh
v�fh
v�dv= 0 (40)

− 
1−��Ql&l
bl�Jl
bl�fl
bl�+ 
1−��Ql&l
v−0 �Jl
v0�fl
v0�
+v0
+bl

− 
1−��Ql&l
v0�Jl
v0�fl
v0�
+v0
+bl

+�Qh
+v0
+bl

∫ wv0

bh

d&h
v�

dv0
Jh
v�fh
v�dv= 0� (41)

in which +v0/+bh and +v0/+bl can be derived from the par-
tial derivatives of both sides of Equation (16) with respect
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to bh and bl, respectively:

w&l
v
−
0 �
+v0
+bh

+w
∫ v0

bl

d&l
t�

dbh
dt

=w&h
wv0�
+v0
+bh

−&h
bh�+
+v0
+bh

∫ wv0

bh

d&h
t�

dv0
dt (42)

−w&l
bl�+w&l
v−0 �
+v0
+bl

=w&h
wv0�
+v0
+bl

+ +v0
+bl

∫ wv0

bh

d&h
v�

dv0
dv� (43)

The system of equations above allows us to solve the
revenue-maximizing minimum bids for l-type advertisers
(b∗l ) and h-type advertisers (b

∗
h). For example, solving (40)

we can get bh = b∗h
bl�. Substituting b∗h
bl� into (41), we can
derive b∗l .

Proof of Proposition 6. Denote H
x� ≡ �Fh
x/Qh� +

1− ��Fl
x/Ql�. Using the similar approach as in Proof for
Proposition 1, we can derive the equilibrium bidding func-
tion for the generalized first-price auction as

b
x�= x−
∑m
j=1 �j

∫ x
0 

n−1
n−j �H
t�

n−j �1−H
t��j−1 dt∑m
j=1 �j


n−1
n−j �H
x�n−j �1−H
x��j−1

�

If this bid is from an l-type advertiser, let v = x/Ql. Not-
ing that H
Qlv�= �Fh

Ql/Qh�v�+
1−��Fl
v�= �Fh
weffv�+

1−��Fl
v�=Gl
v�, we have

b
x� = Qlv−
∑m
j=1 �j

∫ Qlv
0 
n−1n−j �H
t�

n−j �1−H
t��j−1 dt∑m
j=1 �j


n−1
n−j �H
Qlv�n−j �1−H
Qlv��j−1

= Qlv−Ql
∫ v
0 &l
t� dt

&l
v�
=Qlbl
v��

which means the total payment the advertiser bids is
exactly the unit price he/she would bid under efficient
weighted unit-price auctions times his/her expected CTR.
Similar argument holds if the bid is from an h-type adver-
tiser. Therefore, efficient weighted unit-price auctions are
revenue-equivalent to generalized first-price auctions.
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