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Abstract

We investigate the value of past performance information in the context of keyword advertising auctions, where advertisers

differ both in valuation-per-click and in the numbers of clicks they can generate (their performance). We focus on weighted unit-

price-contract (UPC) auctions, in which bidders bid unit prices and pay accordingly if they win, and their bids are weighted by

factors based on their own past performance. We characterize the efficient and the revenue-maximizing weighting factors and apply

our framework to study Yahoo!’s and Google’s auction designs, each of which can be viewed as a special case of weighted UPC

auctions.
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1. Introduction

The majority of auction design literature has made

assumptions that bidders’ valuation can be ordered

along a single dimension, largely to facilitate solving

the design problem. This is not the case, however, in

auctions for advertising slots on search engines.1

Advertisers may differ both on their valuation-per-

click on their advertisements and on their abilities to

generate clicks. It is no doubt that advertising interme-
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1 Keyword advertising is an online marketing service provided by

search engines (e.g., Google), in which advertisers can specify key-

words under which they want their advertisements to appear. These

advertisements usually appear along side or above the search results

and are labeled as bsponsored linksQ or bsponsored resultsQ. Most

search engines use auctions to sell their keyword advertising slots.
diaries (search engines) can still ask advertisers to bid

on their total payment so that traditional mechanisms

such as first-price sealed-bid or English auctions can be

applied. However, one may wonder whether alternative

mechanisms could better accommodate the underlying

bi-dimensionality of bidders’ valuation. This paper

explores one Google-like approach that makes use of

the information on advertisers’ past click-through rates

(CTRs). In Google’s approach, each advertiser submits

a bid on how much they are willing to pay for every

click, and the assignment of advertising slots is based

on a score rule that weighs advertisers’ bid price by

their past CTRs.2 This auction mechanism, which we

shall call weighted unit-price contract (UPC) auctions,

has two essential features. First, advertisers bid unit
42 (2006) 1307–1320
2 Recently, Google allows the weighting factors to be jointly deter-

mined by advertisers’ past CTRs, the relevance of their advertise-

ments to keywords, and other relevancy factors.
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prices, and winners pay for the actual clicks at unit

prices determined by the auction. Hence, advertising

intermediaries essentially sell unit-price contracts to

advertisers. Second, the allocation is based on a score

rule that weighs bids by a factor that incorporates the

available information on other dimensions of bidders’

characteristics.

To our knowledge, weighted UPC auctions as a way

of using past information on bidders have not been well

studied by researchers. Many questions are pending:

how do rational bidders behave in weighted UPC auc-

tions? How do weighted UPC auctions perform, com-

pared to benchmarks such as first-price sealed-bid or

second-price auctions? How to choose weighting fac-

tors to improve resource allocation efficiency or to

maximize the auctioneer’s revenue? Is the information

about advertisers’ past CTRs useful to advertising

intermediaries? These are questions to be addressed in

this paper.

Answers to the above questions are of importance to

the online advertising industry, which is expected to

reach US$13.8 billion in total revenue by 2006 [2].

Google doubled its revenue to US$3.19 billion, its net

income increased fourfold to US$399 million in 2004,

and its market valuation exceeded US$50 billion. While

most search engines have adopted UPC auctions in

selling advertising slots, their ways of ranking adver-

tisers differ. As we have mentioned above, Google

weighs advertisers’ bids, i.e., the price they are willing

to pay for each click on their advertisements, by their

past CTRs. Yet Yahoo!, another leader in the industry,

ranks advertisers solely by their bids. This paper pro-

vides a theoretical framework to compare these differ-

ent ranking mechanisms.

Though we discuss the above questions in the con-

text of keyword advertising, weighted UPC auctions

may have wider applications. They may also be used in

selling access to other resources, such as publishing

rights, rental properties, store fronts in an electronic

marketplace, and Internet bandwidth, provided that

the outcome from using these resources is verifiable

and information on non-price dimensions of bidders’

characteristics is available to the auctioneer. Weighted

UPC auctions are especially suitable for use on the

Internet, which can often provide efficient ways of

tracking bidders’ past performance.

Our investigation takes place in a setting where a

risk-neutral intermediary auctions off one advertising

slot to n risk-neutral advertisers. Advertisers differ not

only in their valuation-per-click but also in their past

CTRs, which serve as signals about their future CTRs.

Both valuation-per-click and signals for future CTRs
are symmetrically and independently distributed across

advertisers. Advertisers privately learn their valuation-

per-click and signals about their future CTRs. In addi-

tion, signals about advertisers’ future CTRs are also

learned by the intermediary. The intermediary’s prob-

lem is to choose weighting factors for advertisers with

different signals for future CTRs to maximize its reve-

nue or resource-allocation efficiency.

We show that when advertisers’ bids are weighed by

their expected CTRs, the auction is efficient. The effi-

cient UPC auction also generates the same amount of

expected revenue as a conventional first-price sealed-

bid auction (or other revenue-equivalent formats). Effi-

cient UPC auctions are not necessarily revenue-maxi-

mizing, however. We show that under the increasing

hazard-rate condition, the revenue-maximizing UPC

auctions should favor advertisers with low expected

CTRs in the sense that the weighting factor for adver-

tisers with low expected CTRs should be higher (or

equivalently, the weighting factor for advertisers with

high expected CTRs should be lower) than it is in

efficient UPC auctions. By favoring advertisers with

low expected CTRs, advertising intermediaries can

force advertisers with high expected CTRs to bid

more aggressively, which will more than compensate

the loss due to allocation inefficiency. The fact that

weighted UPC auctions can generate higher expected

revenue than standard high-bid auctions suggests that

information about advertisers’ past is indeed valuable to

advertising intermediaries.

By studying weighted UPC auctions under the uni-

form distribution, we reveal that the optimal weighting

factor for advertisers with low expected CTRs

decreases with the total number of bidders, but is

bounded away from the efficient weighting factor.

The intuitive explanation is that when the number of

advertisers increase, the increased competition among

advertisers with high expected CTRs drives down their

information rents, reducing the need of using adverti-

sers with low expected CTRs to increase competition.

We also find that the optimal weighting factor for

advertisers with low expected CTRs increases with

the ratio of low expected CTRs to high expected CTRs.

Finally, the expected revenue from a standard UPC

auction (analogous to Yahoo!’s) and from an efficient

UPC auction (analogous to Google’s) can not be unan-

imously ranked. Our numerical results suggest the latter

design appears to outperform the former when the

number of bidders is large (the converse is true when

the number of bidders is small).

The paper proceeds as follows. In Section 2 we

review related literature. Section 3 lays out our



3 Since we have normalized total traffic to size 1, the click-through

rate and the number of clicks are interchangeable.
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model, followed by an analysis of bidding functions

and the intermediary’s expected revenue in Section 4.

Section 5 examines the efficient and the revenue-max-

imizing designs and compares standard, efficient, and

optimally weighted UPC auctions. Section 6 concludes

the paper.

2. Related literature

Information plays an important role in auction

designs. Milgrom and Weber [11] show that auctioneers

can gain by revealing their information about the object

ex ante if bidders’ private estimates of the item’s value

are affiliated. Riley [12] argues that auctioneers can

increase their revenues in sealed-bid auctions by making

the winner’s payment dependant on ex post public

information about the item’s value, such as by introduc-

ing positive royalty rates. We focus on investigating

UPC auctions as alternative auction mechanisms that

can make use of ex ante information about bidders in a

private-value setting.

Our research relates to the study of asymmetric

auctions [10]. In fact, by making signals for expected

CTRs public before the auction and limiting the num-

ber of bidders to two, we can turn our model into one

similar to that in [10]. The key difference between an

asymmetric auction model and ours is that in our

model an advertiser is not sure whether an opponent

has high or low expected CTRs, which implies all

advertisers have symmetric beliefs about their oppo-

nents. Besides, much of the asymmetric auction liter-

ature focuses on comparing the revenues generated by

first-price sealed-bid and English auctions, while we

study weighted UPC auctions.

The weighted UPC auctions have one feature in

common with scoring auctions used in the procure-

ment setting: a single score is computed for each

bidder and the allocation is solely determined by

scores. A few authors [3,5] study settings where

suppliers submit multidimensional bids–e.g., cost

and quality–but their private information is one-di-

mensional. Asker and Cantillon [1] generalize this

line of research to allow suppliers to have multi-

dimensional private information. The score rules in

the above-mentioned research are quasi-linear in the

monetary dimension of bids, and therefore different

from this paper. Ewerhard and Fieseler [6] examine

UPC auctions in the procurement setting where sup-

pliers bid unit prices for every factor needed to ac-

complish a task (e.g., highway contracting). In their

model, scores are computed as weighted average of

factor prices.
Our paper also relates to recent work on search

engine pricing. Hu [9] considers whether to incorporate

CTRs as a part of incentive contracts between interme-

diaries and advertisers in a principal-agent setting. Feng

et al. [8] use numerical simulations to compare Goo-

gle’s and Yahoo!’s methods of ranking advertisers.

Feng [7] studies the optimal allocation mechanism in

a multiple-slot setting where advertisers’ valuations

decrease in the ranks of slots at different speeds. Her

work therefore complements ours. Weber and Zheng

[13] study a search market model that encompasses

both consumers’ search problem and advertisers’ bid-

ding problem. In their model, advertisers’ valuation of

an advertising slot is determined by a single parameter,

and the intermediary ranks advertisers by the weighted

average of their bids and the social surplus they gener-

ate. Thus, their model setting is different from ours.

3. Model setup

We consider an online intermediary (hereafter inter-

mediary) who auctions off a single advertising slot to n

advertisers at a given time period. The total traffic to the

advertising slot is exogenously determined, normalized

to 1.

All advertisers are risk-neutral. Each advertiser’s

total valuation for the advertising slot is its valuation-

per-click, v, times the number of clicks it can generate,

r, which, in our case, coincides with its click-through

rate.3 An advertiser’s payoff from winning the slot is

additive in its total valuation for the slot and the money

it pays, that is, if an advertiser pays P for the slot, its

payoff from winning is given by

U ¼ rv� P: ð1Þ

The difference in advertisers’ valuation-per-click

may arise from their different abilities to turn a visitor

into a buyer and/or from the different profit they make

from each purchase. Advertisers may have different

CTRs for several reasons. First, the relevance of the

advertisement to search traffic varies from one adver-

tiser to another. Second, the presentation of an adver-

tisement may become a differentiation factor. Third, the

CTR may differ due to different degrees of brand

recognition. It is worth noting that the click-through

rate in our setting solely reflects the advertiser’s (adver-

tisement’s) intrinsic ability to attract clicks, whereas the

click-through rate in a general setting may also be
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influenced by where (how, when) the slot is placed.4

How the slot is presented is common to all potential

winners, and therefore can be regarded as the attribute

of the advertising slot.

Each advertiser learns its own valuation-per-click

before the auction, but not others’.5 All advertisers

and the intermediary hold a common belief about the

distribution of v, denoted as F(v). We assume F(v)’s

density function, f(v), has a fixed support [0,1], and is

positive and differentiable everywhere within the sup-

port. We let F(v)=1 for all v N1.

Each advertiser learns a signal h before the auction,

which allows it to make an inference about its own

future click-through rate. The same signal is also

learned by the intermediary who will make the same

inference about the advertiser’s future click-through

rate. h is not observed by other bidders, however.6

One such signal is advertisers’ past CTRs. To simplify

our analysis, we assume ha{H,L}. Advertisers who

receive signal H have high expected CTR, EHu
E[r|h =H], and those who receive signal L have low

expected CTR, ELuE[r|h =L](EL bEH). We also call

the former H-type advertisers, and the latter L-type

advertisers. We assume the probabilities for an adver-

tiser to receive a signal H and L are a and 1�a
(0ba b1), respectively, and are common knowledge.

The advertising slot is sold through a first-price,

sealed-bid UPC auction, i.e., one in which each adver-

tiser places a bid b in a sealed form, and if it wins, will

pay for all generated clicks at the unit price b. We

assume there is no entry fee or reserve price. The

auctioneer assigns each advertiser a score which is a

product of the advertiser’s bid and a weighting factor

based on the type of signal the advertiser receives. The

advertiser with the highest score will be the winner of

the auction. Since neither the allocation of the slot nor

the winner’s payment is affected by rescaling the

weighting factors, we can normalize the weighting

factor for H-type advertisers to be 1 without loss of
4 For example, an advertising slot at the top of the page can

normally attract more clicks (therefore generate higher click-through

rates) than a same-sized slot located at the bottom of the page. This

latter factor is common to all advertisers and therefore can be attrib-

uted to the advertising slot.
5 Advertisers may not be informed about opponents’ valuations for

several reasons: first, it may be impossible to infer an advertiser’s

valuation-per-click from their ranking because intermediaries rarely

publish bids. Second, even if one could learn opponents’ past bids, it

is still difficult to infer their valuation because their bids may also be

affected by their past CTRs. Third, advertisers may drop out of an

auction or join one at any time—the dynamic pool of bidders makes it

difficult to infer valuation-per-click.
6 Neither Google nor Yahoo! publishes advertisers’ CTR information.
generality. Let c (c N0) denote the weighting factor for

L-type advertisers. The score for an advertiser who

receives a signal h and places a bid b is given by

s b; hð Þ ¼ b; if h ¼ H

cb; if h ¼ L

�
ð2Þ

The intermediary’s problem is to choose c to maxi-

mize its expected revenue or the resource-allocation

efficiency.

By allowing c to take different values, we can ac-

commodate different auction formats. When c =1, the
winners are determined solely by bids, like in the auc-

tion format adopted by Yahoo!. We call the case c =1
standard UPC auctions. When c b1, bids from adver-

tisers with lower expected CTRs are weighed less than

those with higher expected CTRs. One version of c b1 is
implemented by Google. To our knowledge, Google

weighs advertisers’ bids on a particular keyword by

their CTRs over their entire history on this keyword,

which, if we believe high past CTRs lead to high future

CTRs, translates to the case where bids from advertisers

with high expected CTRs are weighted more.

To summarize, every advertiser gets a signal about

its expected CTR and learns its valuation-per-click

before the auction. Each advertiser then places a bid

b as its pay per click. The intermediary selects the

winner based on the pre-announced score rule specified

in (2). The winner’s advertisement is displayed in the

slot during the period. At the end of the period, the

winner pays the intermediary according to the actual

number of clicks at unit price b.

4. The bidding functions and expected revenue

We consider a symmetric, pure-strategy Bayesian-

Nash equilibrium for the above problem. By bsym-

metricQ, we mean bidders with the same valuation-per-

click and the same expected CTR will bid the same in

equilibrium. Let bH(v) (bL(v)) denote the mapping from

an H-type (L-type) bidder’s valuation-per-click to its

equilibrium bid. We term bH(v) and bL(v) as the bidding

functions for H-type and L-type, respectively.

The lowest-valuation bidder (v=0) will always bid

zero in equilibrium. Obviously, a bidder with zero

valuation-per-click will never bid more than zero

since it would incur a loss if it were to win the auction.

Thus, assuming negative bids are not allowed, we must

have bL(0)=bH(0)=0.

We conjecture that both H-type’s and L-type’s bid-

ding functions are strictly increasing (we verify this in

Appendix 2). Let b̄HubH (1) and b̄LubL(1) denote the

upper bounds of bids from H-type and L-type bidders.
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Inverse bidding functions exist, denoted as /H(b),

ba [0,b̄H] and /L(b), ba [0,b̄L], respectively.

An L-type bidder who bids b wins the auction if and

only if all other L-type bidders bid less than b, and all

H-type bidders bid less than cb. The probability for an

L-type bidder to bid less than b is F(/L(b)) if bV b̄L
and is 1 if bNb̄L. To simplify presentation, we define

/i bð Þ ¼ 1; for bNb̄i; i ¼ H ; Lf g: ð3Þ

By definition (3) the probability for an L-type bidder

to bid less than b can be uniformly written as F(/L(b)).

The probability for an H-type bidder to bid less than cb
is F(/H(cb)). An L-type bidder’s expected payoff is

UL v; bð Þ ¼ EL v� bð Þ aF /H cbð Þð Þ½
þ 1� að ÞF /L bð Þð Þ�n�1: ð4Þ

Similarly, an H-type bidder’s expected payoff is

UH v; bð Þ ¼ EH v� bð Þ aF /H bð Þð Þ½
þ 1� að ÞF /L b=cð Þð Þ�n�1: ð5Þ

The optimal bidding functions bL(v) and bH(v)

should necessarily satisfy the first order conditions

BUL v; bð Þ
Bb

jb¼bL vð Þ ¼ 0 and
BUH v; bð Þ

Bb
jb¼bH vð Þ

¼ 0; for all va 0; 1½ �: ð6Þ

Conditions (6) yield two differential equations in-

volving /L and /H. Lemma 1 is critical for us to

explicitly solve (6).

Lemma 1.

If cV1; bH cvð Þ ¼ cbL vð Þ; 8va 0; 1½ � ð7Þ

If cN1; bH vð Þ ¼ cbL v=cð Þ; 8va 0; 1½ � ð8Þ

Proof. See Appendix for all proofs. 5

Lemma 1 says in equilibrium an H-type bidder with

valuation-per-click cv and an L-type bidder with valu-

ation-per-click v will bid the same score. The intuition

for Lemma 1 is as follows. Consider an H-type with

valuation-per-click cv who bids cb and an L-type with

valuation-per-click v who bids b. By the score rule, the

former has the same winning probability as the latter.

The payoff, conditional on winning, of the former

differs from that of the latter only by a scalar. Since

they also have the same probability of winning, their

expected payoff functions differ only by a scalar too.

The fact that multiplying a payoff function by a scalar

does not alter the solution to an optimization problem
implies that b maximizes the L-type’s expected payoff

if and only if cb maximizes H-type’s, hence Lemma 1.

Lemma 1 implies that

If c V1;/H cbð Þ ¼ c/L bð Þ; 8ba 0; bL
� �

ð9Þ

If cN1;/H bð Þ ¼ c/L b=cð Þ; 8ba 0; bH
� �

: ð10Þ

Based on Lemma 1 and (9) and (10), we can solve

the two differential equations in (6) separately.

Proposition 1. Given cN0, the equilibrium bidding

functions are given by

bL vð Þ ¼ v�

Z v

0

aF ctð Þ þ 1� að ÞF tð Þ½ �n�1dt

aF cvð Þ þ 1� að ÞF vð Þ½ �n�1

bH vð Þ ¼ v�

Z v

0

aF tð Þ þ 1� að ÞF t=cð Þ½ �n�1dt

aF vð Þ þ 1� að ÞF v=cð Þ½ �n�1

;

8>>>>>>><
>>>>>>>:
for all va 0; 1½ �: ð11Þ

Both L-type and H-type advertisers bid less than

their true valuation (except for zero-valuation bidders),

which is common among first-price auctions. In the

Appendix we verify that both bL (v) and bH (v) are

monotonically increasing.

The kinks in equilibrium bidding functions are worth

noting. When c b1, F(t/c)=1 for tzc, so the H-type’s

bidding function has a kink at v =c. Specifically,

bH vð Þ ¼
v�

Z v

0

aF tð Þ þ 1� að ÞF t=cð Þ½ �n�1dt

aF vð Þ þ 1� að ÞF v=cð Þ½ �n�1
; va 0; c½ �

v�

Z c

0

aF tð Þþ 1�að ÞF t =cð Þ½ �n�1dxþ
Z v

c
aF tð Þ þ 1� a½ �n�1dt

aF vð Þ þ 1� a½ �n�1
; va c; 1½ �

8>>>>>>><
>>>>>>>:

The intuition is as follows. We consider the case of

cV1 first. It is straightforward to see that an H-type

bidder with valuation-per-click v bc can possibly lose

the auction to either H-types or L-types (by Lemma 1). In

other words, those H-type bidders have to face compe-

tition from both H-types and L-types in equilibrium. On

the other hand, an H-type bidder with high valuation

(vzc) will only face competition from other H-types,

since, according to Lemma 1, L-type bidders with the

highest valuation (v =1) will bid the same score as H-

type bidders with valuation-per-click v =c, and thus no

L-type bidders can match the score bid by an H-type

bidder with even higher valuation. Thus, H-type bid-

ders who have valuation-per-click lower than c and

who have valuation-per-click higher than c face differ-

ent numbers of competitors. As a result, the H-type’s

bidding function has a kink at v =c. Similarly, when

c N1, the highest-valuation H-type bidders will bid the
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same score as an L-type bidder with valuation v =1/c.
Therefore the L-type bidder’s bidding function has a

kink at v =1/c.
The following example illustrates the impact of the

weighting factor on bidding functions using two stylized

UPC designs, c =1 (the standard UPC auction) and

c =EL/EH=0.5 (the weighted UPC auction). Notice

that if c=1, H-type and L-type bidders will follow the

exactly same bidding strategy. This is because when c =1
their payoff functions differ only by a scalar. When

c =0.5 there is a kink in H-type’s bidding function. H-

typeswith valuation-per-click exceeding the kink bid less

aggressively than in the case c =1, since they can beat any
L-type and face the only competition from other H-types.

It is worth noting that although the L-type bidder with

value 1 bidsmuchmore than theH-type bidderwith value

c, they have the same score and therefore the same

winning probability in this weighted UPC auction.

Example 1. Let F(v)=1� (1�v)2, n =10, EL=0.05,

EH =0.1, and a =0.3. Fig. 1 illustrates the bidding

functions under the standard UPC auction (c =1), and
the UPC auction weighted by expected CTRs (c=EL/

EH =0.5), respectively. In the latter case, the H-type’s

bidding function has a kink at v =0.5.

We can explicitly evaluate the expected revenue of

the intermediary.

Proposition 2. The expected revenue of the intermediary

is

n 1� að ÞEL

Z 1

0

aF cvð Þ þ 1� að ÞF vð Þ½ �n�1

� v� 1� F vð Þ
f vð Þ

� �
f vð Þdvþ naEH

Z 1

0

aF vð Þ½

þ 1� að ÞF v=cð Þ�n�1 v� 1� F vð Þ
f vð Þ

� �
f vð Þdv: ð12Þ
The first term above is the expected revenue from

L-type bidders and the second is expected revenue

from H-type bidders. [aF(cv)+ (1�a)F(v)]n�1 is L-

type advertisers’ equilibrium probability of winning

and [aF(v)+ (1�a)F(v/c)]n�1 is H-type advertisers’.

EL v�ð 1�F vð Þ
f vð Þ Þ and EH v� 1�F vð Þ

f vð Þ

� �
can be viewed as

the bmarginal revenuesQ generated by L-type and H-

type advertisers, respectively, in Bulow and Robert’s

[4] terms. The intermediary’s problem is reduced to

maximize its expected bmarginal revenueQ from L-

types and H-types by choosing two winning probabil-

ity functions: [aF(cv)+ (1�a)F(v)]n�1 for L-types

and [aF(v)+ (1�a)F(v/c)]n�1 for H-types. Though

the expected revenue in weighted UPC auctions (12)

looks similar to those in asymmetric auctions [10], there

are a few notable differences. First, unlike asymmetric

auctions, weighted UPC auctions allocate resources

based on classes (in this case, expected CTRs) instead

of identities. This feature is useful when discrimination

based on identities is not possible. Second, the value of

the weighted UPC auction lies in the distinctive set of

allocation plans it offers. To our knowledge, this set of

allocation plans has not been studied in previous liter-

ature. Though the weighted UPC auctions are a subset

of all possible mechanisms, they have the advantage of

intuitive implementation.

It is worth pointing out that changing c not only

affects H-type’s and L-type’s bidding functions, but

also affects their equilibrium winning probabilities. In

particular, decreasing c tends to (but not always) cause

H-type bidders’ to bid less, which has a negative effect

on total revenues, and L-type bidders to bid more, which

has a positive effect (see Fig. 1 for an example). Mean-

while, decreasing c will also increase H-type bidders’

winning probabilities ([aF(v)+(1�a)F(v/c)]n�1) and

decrease L-type bidders’ ([aF(cv)+(1�a)F(v)]n�1),
which has a positive effect on total revenues. The

overall effect of the change c depends on the balances

of the above effects. In Example 1, we can calculate

that as c decreases from 1 to 0.5, the total expected

revenue increases from 0.0387 to 0.0394. In the next,

we examine the efficient and the optimal weighting

factors.

5. The efficient weighting factor and the optimal

weighting factor

When an advertiser with valuation-per-click v and

expected click-through rate Eh, ha{H,L} wins the

advertising slot, it creates a social surplus of vEh.

Given the probabilities of winning for H-type and L-

type advertisers are [aF(cv)+ (1�a)F(v)]n�1 and
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[aF(v)+ (1�a)F(v/c)]n�1, respectively, the total social

surplus generated by a weighted UPC auction is given

by

W ¼ n 1� að ÞEL

Z 1

0

aF cvð Þ þ 1� að ÞF vð Þ½ �n�1vf vð Þdv

þ naEH

Z 1

0

aF vð Þ þ 1� að ÞF v=cð Þ½ �n�1vf vð Þdv:

ð13Þ
We define the efficient weighting factor, c*, as the

factor that maximizes W. We call the UPC auction

with an efficient weighting factor an efficient UPC

auction. Meanwhile, we denote WFB as the first best

social surplus that a social planner can achieve under a

complete-information setting. The first best efficiency

is reached when an advertiser is assigned the slot if

and only if it has the highest total valuation (vEh).

Proposition 3. The efficient weighting factor is given

by c*=EL/EH. When c=c*, W=WFB. Moreover, the

expected revenue of the efficient UPC auction equals

that of a standard first-price auction where advertisers

bid their total payment.

According to Lemma 1, when the weighting factor

is EL/EH, an H-type advertiser whose valuation-per-

click is EL/EH times of an L-type advertiser’s will bid

EL/EH times of the L-type advertiser’s bid—so they

will tie. Because they also have the same total

expected valuation for the advertising slot, the ranking

of bids is in fact consistent with their total valuation,

thereby assuring allocation efficiency. It follows that

efficient UPC auctions allocate the same way as stan-

dard first-price auctions and generate the same

expected revenue to auctioneers. Bidders also pay

the same expected amount, except that in efficient

UPC auctions they pay a fee that varies according to

the ex post outcome, whereas in standard auctions, an

upfront lump sum. In this regard, bidders in efficient

UPC auctions assume less risk than those in standard

auctions.

We define the optimal weighting factor, c**, as the
factor that maximizes the total expected revenue of the

intermediary. We call the UPC auction with an optimal

weighting factor an optimally weighted UPC auction.

The optimal weighting factor may depend on a number

of factors, including the number of bidders, the distri-

bution of valuation, the signals (EL and EH), and the

distribution of the signals (a). The explicit formula for

c** is not generally attainable, except for some special

distributions (see Corollary 1). So we turn to character-

ize the boundaries for the optimal weighting factor.
Proposition 4.

(a) The optimal weighting factor c**NEL/EH, if the

distribution function F satisfies the property of increas-

ing hazard rate (IHR), i.e.,

d

dv

f vð Þ
1� F vð Þ

� �
z0 for any v ð14Þ

(b) The optimal weighting factor c**V1, if F

satisfies IHR and the negative impact of raising c
on H-type advertisers’ winning probability increases

in v, i.e.,

B
2 aF vð Þ þ 1� að ÞF v=cð Þ½ �n�1=BcBvV0 for any cz1

and any v: ð15Þ

In our setting, the IHR property is interpreted as that

an advertiser’s valuation-per-click above a certain

threshold value is more likely to fall into the low end

of its range as the threshold value increases. The IHR

property is a frequently made assumption in games of

incomplete information. The property is known to be

satisfied by a wide range of distributions, including

uniform, normal, and exponential.

Proposition 4 suggests that when (14) and (15) are

satisfied, the optimal weighting factor lies between the

efficient weighting factor c* and 1. The intuition is

as follows. When c =EL/EH, an L-type bidder with

valuation-per-click v bids the same score as an

H-type bidder with valuation-per-click vEL/EH in

equilibrium. When the IHR condition holds, the

bmarginal revenueQ from the former EL v� 1�F vð Þ
f vð Þ

� �� �
is higher than the bmarginal revenueQ from the latter

EH cv� 1�F cvð Þ
f cvð Þ

� �� �
. We can show that marginal effect

of increasing c is to redistribute part of H-type bidders’

winning probability to L-type bidders who bid the same

score as the former in the equilibrium (see Appendix 7).

Because the intermediary’s total expected total revenue

is the total expected bmarginal revenueQ from all win-

ning bidders (Proposition 2), increasing c will increase

the expected total revenue for the intermediary. Thus,

the optimal weighting factor should generally be

higher than the efficient weighting factor c*. It is

worth nothing that this result does not depend on

proportion of H-type bidders (a)—although the opti-

mal weighting factor (c**) may do.

When c keeps increasing, the difference between an

L-type’s marginal revenue and that of an H-type with

the same score in equilibrium reduces or even reverses

for some v’s. The optimal c** is generally determined

endogenously by all model parameters. Proposition 2
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shows that when regularity condition (15)7 holds, the

optimal weighting factor c** is bounded above by 1.

Proposition 4 implies that the optimally weighted

UPC auction is generally sub-efficient: it may award

the advertising slot to an L-type advertiser even though

an H-type advertiser may value it more. Because the

efficient UPC auction generates the same expected rev-

enue as standard auctions (Proposition 3), Proposition 4

also implies that optimally weighted UPC auctions can

generate more revenue than standard first-price auctions

that do not take advantage of past performance infor-

mation on bidders.

To facilitate understanding the optimal weighting

factor, we analyze the case in which valuation-per-

click is uniformly distributed on [0,1]. The following

corollary establishes the optimal weighting factor under

the uniform distribution and some comparative statics

about it.

Corollary 1. Assuming v is uniformly distributed on

[0,1], the optimal weighting factor is given by

c44 ¼ n� 1ð ÞEL þ nþ 1ð ÞEH

2nEH

ð16Þ

EL/EH bc**b1, c** decreases in EH/EL and in n.

Corollary 1 shows that under the uniform distribution

the optimal weighting factor is always between EL/EH

and 1. When n is large, c** is approximately ELþEH

2EH
.

This implies the optimal weighting factor is bounded

away from the efficient weighting factor even in a limit

case. When the ratio of an H-type’s expected CTR to an

L-type’s expected CTR increases, it is more profitable to
7 This condition requires that as c increases, high-valuation H-type

advertisers lose their probability of winning faster than low-valuation

H-type advertisers.
let H-types win. As a result, the intermediary should

decrease the weighting factor for L-types. c** decreases
in n because the competition within H-type advertisers

will increase when n increases, reducing the need to

induce competition by L-type advertisers. In such a

case, the intermediary should decrease L-type’s weight-

ing factor to reduce allocation efficiency distortion.

In the following example, we numerically compare

the expected revenues of the standard, efficient, and

optimally weighted UPC auctions.

Example 2. Assume the valuation-per-click is uniform-

ly distributed on [0,1], n =10, EL=0.2, EH=0.425, and

a =0.5. We plot the expected revenues under different

weighting factors in Fig. 2. We highlight the expected

revenues from standard, efficient, and optimally

weighted UPC auctions.

As Fig. 2 illustrates, neither the standard UPC auc-

tion (analogous to Yahoo!’s) nor the efficient UPC

auction (analogous to Google’s) is optimal. The effi-

cient UPC auction assigns a lower weighting factor to

L-types than the optimal one. The standard UPC auc-

tion assigns a higher weighting factor than the optimal

one. In this particular case, the standard UPC auction

and the efficient UPC auction endure eleven percent

and four percent revenue loss, respectively. Given the

size of keyword search markets (for Google, the reve-

nue is US$1.38 billion of the second quarter, 2005), the

financial gains for Yahoo! and Google to shift to opti-

mally weighted UPC auction can be significant.

Given the popularity of standard and efficient UPC

auctions in practice, it is also tempting for us to rank the

two formats in terms of revenues. However, the follow-

ing numerical example shows that the expected reven-

ues from a standard UPC auction and an efficient UPC

auction cannot be unanimously ranked. This and other

numerical examples we compute also reveal an inter-

esting pattern: the efficient UPC auction tends to per-
0
5 6 7 8 9 10 11 12 13 14 15

n

Fig. 3. Expected revenues under different n.
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form better than the standard UPC auction when the

number of bidders is large while the opposite is true

when the number of bidders is small (Fig. 3). It also

appears that revenue generated by the efficient UPC

auction approaches that of the optimally weighted auc-

tion as the number of bidders increases while the stan-

dard UPC auction does not. Besides the number of

bidders, the composition of L-type and H-type bidders

can also affect the revenue ranking of the two designs.

6. Conclusion

We studied the issue of exploiting past information

on one dimension of bidders’ valuation in the key-

word advertising auction context. Our study was mo-

tivated by increasingly available information on

bidders in recurring online auctions. In doing so, we

studied a class of weighted UPC auctions that encom-

pass popular auction formats including those adopted

by Yahoo! and Google. Although UPC auctions may

not be the theoretically optimal form, they are still

interesting due to their ease of implementation and

practical relevance.

One of our main findings was that efficient UPC

auctions, in which unit-price bids are weighted by

expected CTRs, can achieve the first-best (ex ante)

efficient allocation. This makes weighted UPC auc-

tions an attractive mechanism since as we have men-

tioned in the introduction, weighted UPC auctions can

reduce bidders’ risks. We also showed that auctioneers

can achieve higher revenues by using appropriate

weighting factors based on past performance informa-

tion. The revenue-maximizing weighting factor

assigned to disadvantageous bidders should be higher

than is suggested by the efficient resource-allocation

criteria. The intuition for this result is familiar in

economics literature: by favoring disadvantaged

players, intermediaries can reduce the economic rent

of the advantageous players, the benefit of which can

more than compensate the loss caused by misalloca-

tion. Although the above results are derived in the

keyword advertising setting, they can be generalized

to other online settings where auctioneers can observe

bidders’ past performances.

We applied our model framework to study the

keyword auction designs of Yahoo! and Google, lea-

ders of two main camps in keyword advertising. In

terms of resource allocation efficiency, Google’s ap-

proach (weighted UPC auctions) dominates Yahoo!’s.

However, in terms of the ability to generate expected

revenues, neither company’s design can dominate an-

other. Numerical results suggest that Google’s ap-
proach may generate higher revenue when the

number of bidders is large.

Our analysis generates two implications for the

keyword advertising industry. First, firms that are

concerned about assigning advertisement slots to

those who value them the most should weigh adver-

tisers’ unit-price bids by estimates of their future

click-through rates. Weighted UPC auctions provide

an effective framework to achieve such resource allo-

cation efficiency. Of course, the more information on

advertisers’ past performance and the better estimation

procedure, the higher allocation efficiency advertising

intermediaries can achieve.

Second, firms that are concerned about total reve-

nue should bias more toward low-CTR advertisers

than suggested by efficient UPC auctions. This can

be especially useful when the playing field is uneven

and there are only a few bidders. In practice, an

optimal UPC auction can be implemented by specify-

ing the allocation rule (weighting factors), and can

also be approximated, for example, by employing a

CTR estimating system that biases toward low CTRs.

However, one potential drawback of tilting the field

toward low-CTR advertisers is that, in the long term,

it may select advertisers with low CTRs, causing the

pool of advertisers to deteriorate.

Our model may be expanded in a few directions in

the future. First, it will be interesting to look at cases

where bidders are able to manipulate their signals.

Second, we have assumed that advertisers do not

know others’ past performance, which permits a sym-

metric equilibrium bidding strategy. It would be inter-

esting to ask whether our results can be carried over to

the case where bidders know others’ past performance.

When there are only two bidders, the question reduces

to an asymmetric game such as analyzed in [10].

However, the generalization from the two-bidder

case to the many-bidder case is nontrivial. For in-

stance, we can anticipate that, unlike the two-bidder

case, kinks may emerge in the many-bidder case

where a bidder faces unequal numbers of competitors

when their valuation is low and when their valuation

is high. We speculate that our equilibrium may be

considered as the baverageQ of all equilibriums, each

of which corresponds to a realized asymmetric setting.

Third, in this paper we have assumed all bidders have

past performance records. We may also relax this

assumption by allowing new entrants who have not

established their performance records. This brings out

a practical issue of how to level the field between

those with past performance information and those

without.
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Our model framework may offer a starting point for

studying click-through spam, which has been an in-

creasing threat to the keyword advertising industry.

Click-through spam occurs when individuals or parties

maliciously click on advertising links in which they

have no interest. Click-through spam can quickly

drain advertisers’ budgets without generating any

returns to them. Both standard and weighted UPC

auctions are vulnerable to click-through spam.8 This

novel problem posts some interesting challenges:

What is the impact of click-through spam on various

designs of pay-per-click keyword auctions? Can we

reduce or eliminate the negative impact of click-

through spam through appropriate auction designs? If

yes, how should intermediaries choose their auction

design while taking into consideration click-through

spam? These issues need to be addressed in future

research.
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Appendix A. Proofs

A.1. Proof of Lemma 1

We first consider the case cV1. By (4) and (5),

UH cv; cbð Þ ¼ EHc v� bð Þ aF /H cbð Þð Þ½
þ 1� að ÞF /L bð Þð Þ�n�1

¼ cEH

EL

UL v; bð Þ; 8va 0; 1½ � ðA1Þ

bL vð Þ ¼ argmax
b

UL v; bð Þf g¼ argmax
b

EL

cEH

UH cv; cbð Þ
� 	

¼ 1

c
argmax

bV
UH cv; bVð Þf g¼ 1

c
bH cvð Þ; 8va 0; 1½ �
8 Weighted UPC auctions may have limited resistance to click-

through spam targeted on particular advertisers: the spam causes

one’s CTR to increase, which may bring the advertiser some advan-

tage in the next period.
where the first and the last step is by definition of

bidding functions.When c N1, we can similarly have

UH v; bð Þ ¼ c
EH

EL

UL v=c; b=cð Þ; 8va 0; 1½ �: ðA2Þ

The rest is analogous. 5

A.2. Proof of Proposition 1

Denote VL(v)uUL(v,bL(v)) and VH(v)uUH(v,bH

(v)) as equilibrium payoffs of L-type and H-type adver-

tisers with valuation-per-click v.

VL vð Þ ¼ UL v; bL vð Þð Þ
¼ EL v� bL vð Þð Þ aF /H cbL vð Þð Þð Þ½
þ 1� að ÞF /L bL vð Þð Þð Þ�n�1

¼ EL v� bL vð Þð Þ aF c/L bL vð Þð Þð Þ½
þ 1� að ÞF /L bL vð Þð Þð Þ�n�1

¼ EL v� bL vð Þð Þ aF cvð Þ þ 1� að ÞF vð Þ½ �n�1 ðA3Þ

Where the third step follows from (9), if gV 1, and from

(10), if c N1 and cbL(v)V b̄H. If c N1 and cbL(v)N b̄H
(which imply vN1/c, according to (8)), the third step

results from F(/H(cbL(v)))=F(/H(b̄H))=F(1)=F(cv)=
F(c/L(bL(v))).

dVL vð Þ
dv

¼ BUL v; bL vð Þð Þ
Bv

þ BUL v; bL vð Þð Þ
Bb

dbL vð Þ
dv

ðA4Þ

According to the first order condition, BUL(v,bL(v))/

Bb =0. So,

dVL vð Þ
dv

¼ BUL v; bL vð Þð Þ
Bv

¼EL aF /H cbL vð Þð Þð Þþ 1�að ÞF /L bL vð Þð Þð Þ½ �n�1

¼ EL aF cvð Þ þ 1� að ÞF vð Þ½ �n�1: ðA5Þ

The differential equation (A5) can be solved explic-

itly. Moving dv to the right hand side, integrating both

sides from 0 to v, and applying the boundary condition

VL(0)=0, we get

VL vð Þ¼EL

Z v

0

aF ctð Þþ 1�að ÞF tð Þ½ �n�1dt; for va 0; 1½ �:

ðA6Þ
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Combining (A6) and (A3), we can solve L-type’s

equilibrium bidding function as

bL vð Þ¼v�

Z v

0

aF ctð Þþ 1�að ÞF tð Þ½ �n�1dt

aF cvð Þ þ 1� að ÞF vð Þ½ �n�1
; for va 0;1½ �:

ðA7Þ

Following similar steps, we can solve the equilib-

rium payoff function and the bidding function for H-

types:

VH vð Þ¼EH

Z v

0

aF tð Þþ 1�að ÞF t=cð Þ½ �n�1dt; for va 0;1½ �;

ðA8Þ

bH vð Þ ¼ v�

Z v

0

aF tð Þ þ 1� að ÞF t=cð Þ½ �n�1dt

aF vð Þ þ 1� að ÞF v=cð Þ½ �n�1
;

for va 0; 1½ �: ðA9Þ
ML vð Þ¼ELvqL vð Þ�UL vð Þ¼EL vqL vð Þ �
Z v

0

qL tð Þdt

 �

;

ðA14Þ

MH vð Þ¼EHvqH vð Þ�UH vð Þ¼EH vqH vð Þ�
Z v

0

qH tð Þdt

 �

:

ðA15Þ
In the following, we denote

qL vð Þu aF cvð Þ þ 1� að ÞF vð Þ½ �n�1 and ðA10Þ

qH vð Þu aF vð Þ þ 1� að ÞF v=cð Þ½ �n�1 ðA11Þ

as the equilibrium winning probabilities for L-types and

H-types, respectively. It is clear that both qL(v) and

qH(v) are strictly increasing in v for va [0,1].

Now we show that bL(v) is indeed monotonically

increasing. By integration by parts,

bL vð Þ ¼ v�

Z v

0

qL tð Þdt

qL vð Þ ¼

Z v

0

qLV tð Þtdt

qL vð Þ : ðA12Þ

dbL vð Þ
dv

¼
qLV vð Þ qL vð Þv�

Z v

0

qLV tð Þtdt

 �

qL vð Þ2

¼
qLV vð Þ

Z v

0

qLV tð Þ v� tð Þdt

qL vð Þ2
N0: ðA13Þ

The proof for bH(v) is analogous.

By now we have showed that bL(v) satisfies the first

order necessary condition. In the following, we show

bL(v) is indeed optimal. We examine the payoff of an L-

type bidder with valuation v who bids bVpbL(v), when

every other L-type bids according to bL(v) and every

other H-type bids according to bH(v). Since it is never

optimal for an L-type bidder to bid more than {b̄L,b̄H/

c}, we limit ourselves to the case bVVmax {b̄L,b̄H/c}.
If c N1, we know from Lemma 1 that b̄H=bH (1)=

cbL(1/c)bcbL(1)=cb̄L. Thus there exists vVa [0,1],

such that bV=bL(vV).

UL v; bL vð Þð Þ � UL v; bL vVð Þð Þ

¼ EL

Z v

0

qL tð Þdt�EL v� vV�

Z v V

0

qL tð Þdt

qL v Vð Þ

0
BB@

1
CCA

2
664

3
775qL vVð Þ

¼ EL

Z v

0

qL tð Þdt�EL vqL v Vð Þ�v VqL v Vð Þþ
Z v V

0

qL tð Þdt

 �

¼ EL qL v Vð Þ v V� vð Þ þ
Z v

v V
qL tð Þdt


 �

¼ EL

Z v

v V
qL tð Þ � qL v Vð Þ½ �dt:

Since qL(t) is strictly increasing, UL(v,bL(v))�
UL(v,bL(vV))N0 for both vVbv and vVNv.

If c b1, we know from Lemma 1 that b̄L=bL(1)=

bH(c)/c bbH(1)/c = b̄H/c. Thus there exists vVa [0,1]

such that bV=bH(vV)/c. In addition, the L-type adver-

tiser wins with a probability of qH(vV).
UL v; bL vð Þð Þ � UL v; bH v Vð Þ=cð Þ

¼ EL

Z v

0

qL tð Þdt�EL v� 1

c
v V�

Z v V

0

qH tð Þdt

qH v Vð Þ

0
BB@

1
CCAqH v Vð Þ

2
664

3
775

¼ EL

c

Z vc

0

qH tð ÞdtþqH v Vð Þ v V� vcð Þ�
Z vV

0

qH tð Þdt

 �

¼ EL

c

Z vc

v V
qH tð Þ � qH v Vð Þ½ �dt

where step 2 is due to qH(cv)=qL(v), va [0,1]. Since

qH(v) is strictly increasing,UL(v,bL(v))�UL(v,bH (vV)/
c)N0 holds for both vVbcv and vVNcv. By the same

logic, we can show bH(v) is indeed optimal. 5

A.3. Proof of Proposition 2

Let ML(v) and MH(v) denote the expected payments

from L-type and H-type bidders, respectively, with

valuation v. Because the expected payment from a

bidder is equal to its total expected valuation upon

winning minus its expected payoff,
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The expected payment from one bidder is,

1� að ÞE ML vð Þ½ � þ aE MH vð Þ½ �

¼ 1� að ÞEL

Z 1

0

vqL vð Þ �
Z v

0

qL tð Þdt

 �

f vð Þdv

þ aEH

Z 1

0

vqH vð Þ �
Z v

0

qH tð Þdt

 �

f vð Þdv

¼ 1� að ÞEL

Z 1

0

vqL vð Þf vð Þ � qL vð Þ 1� F vð Þð Þ½ �dv

þ aEH

Z 1

0

vqH vð Þf vð Þ � qH vð Þ 1� F vð Þð Þ½ �dv

¼ 1� að ÞEL

Z 1

0

qL vð Þ v� 1� F vð Þ
f vð Þ

� �
f vð Þdv

þ aEH

Z 1

0

qH vð Þ v� 1� F vð Þ
f vð Þ

� �
f vð Þdv:

The total expected revenue from all bidders is n

times the above. 5

A.4. Proof of Proposition 3

Since bidding functions for L-type and H-type are

both increasing, the competition among bidders with

the same type always ends with the highest-valuation

bidder winning the slot. In inter-type competition, an

L-type bidder with valuation-per-click v ties with an

H-type bidder with valuation-per-click cv (if cV1),
according to Lemma 1. Their total valuations for the

advertising slot are vEL and cvEH, respectively. The

ranking mechanism will be efficient as long as

vEL=cvEH, or c =EL/EH.

Now we show an efficient UPC auction and a stan-

dard first-price auction where bidders have a valuation of

EHv with probability a and ELv with probability (1�a),
and v is distributed according to F. Let b̃L and b̃H denote

bids (random variables) from L-types and H-types, re-

spectively, in the efficient UPC auction. The payoff

function of an L-type bidder is:
UL v; bð Þ ¼ EL v� bð Þ aPr b̃bHb
EL

EH

b

� �


þ 1� að ÞPr b̃bLbb
� 
�n�1

¼ ELv� ELbð Þ aPr EH b̃bHbELb
� 
�

þ 1� að ÞPr ELb̃bLbELb
� 
�n�1

: ðA16Þ
The above payoff function can also be regarded

as the payoff function for a bidder who has a valu-

ation of ELv and bids ELb in a standard first-price

auction. Similarly, the payoff function of an H-type

bidder

UH v; bð Þ ¼ EHv� EHbð Þ aPr EH b̃bHbEHb
� 
�

þ 1� að ÞPr ELb̃bLbEHb
� 
�n�1 ðA17Þ

can also be regarded as the payoff function a bidder

who has a valuation of EHv and bids EHb in the

standard first-price auction. Thus we can infer bid-

ders’ total payment in the standard auction is exactly

the same as in the efficient UPC auction. In other

words, they generate the same expected revenue to

the intermediary. 5

A.5. Proof of Proposition 4

(a) Taking the first order derivative of the expected

revenue (12) with respect to c yields

n� 1ð Þ 1� að ÞaEL

Z 1

0

aF cvð Þ þ 1� að ÞF vð Þ½ �n�2

� vf vð Þ � 1� F vð Þð Þ½ �f cvð Þvdv� n� 1ð Þ 1� að Þ

� aEH

1

c2

Z 1

0

aF vð Þ þ 1� að ÞF v=cð Þ½ �n�2

� vf vð Þ � 1� F vð Þð Þ½ �f v=cð Þvdv: ðA18Þ

We only need to check the sign of the above for

0VcVEL /EH. To do so, eliminate the common positive

terms and change the dummy variable of the second

term (notice that for c b1, the integrand in the second

term is zero for va[c,1]):

EL

Z 1

0

aF cvð Þ þ 1� að ÞF vð Þ½ �n�2 vf vð Þ � 1� F vð Þð Þ½ �

� f cvð Þvdv� EH

Z 1

0

aF cvð Þ þ 1� að ÞF vð Þ½ �n�2

� cvf cvð Þ � 1� F cvð Þð Þ½ � f vð Þvdv: ðA19Þ

Denoting the above as G(c) and reorganizing terms,

G cð Þ ¼
Z 1

0

aF cvð Þ þ 1� að ÞF vð Þ½ �n�2

� EL vf vð Þ � 1� F vð Þð Þ½ � f cvð Þ � EH cvf cvð Þ½f
� 1� F cvð Þð Þ�f vð Þgvdv: ðA20Þ
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Notice the term in curly brackets,

EL vf vð Þ � 1� F vð Þð Þ½ � f cvð Þ � EH cvf cvð Þ½
� 1� F cvð Þð Þ� f vð Þ
¼ ELvf vð Þf cvð Þ � EL 1� F vð Þð Þf cvð Þ
� EHcvf cvð Þf vð Þ þ EH 1� F cvð Þð Þf vð Þ
¼ EL � EHcð Þvf vð Þf cvð Þ þ f cvð Þf vð Þ

� EH

1� F cvð Þ
f cvð Þ � EL

1� F vð Þ
f vð Þ


 �

¼ f vð Þf cvð Þ EL � EHcð Þvþ EH

1� F cvð Þ
f cvð Þ


�

� EL

1� F vð Þ
f vð Þ

�	
:

When cVEL/EH, the first term in the curly brackets is

non-negative. By the IHR property,

EH

1� F cvð Þ
f cvð Þ � EL

1� F vð Þ
f vð Þ N0: ðA21Þ

So, G(c)N0 for any cVEL/EH, which implies

c**NEL/EH.

(b) A sufficient condition for c**b1 is G(c)b0 for

any cz1.

When c N1, change the dummy variable for G(c)
above and reorganize it as:

G cð Þ ¼
Z 1

0

aF vð Þ þ 1� að ÞF v=cð Þ½ �n�2

� EL v=c� 1�F v=cð Þ
f v=cð Þ


 �
�EH v� 1�F vð Þ

f vð Þ


 �� 	

� f vð Þf c=vð Þ v
c
1

c
dv: ðA22Þ

When the IHR property is satisfied, we have:

EL v=c� 1� F v=cð Þ
f v=cð Þ


 �
�EH v� 1�F vð Þ

f vð Þ


 �
b EL�EHð Þ

� v� 1� F vð Þ
f vð Þ


 �
: ðA23Þ

So,

G cð Þb
Z 1

0

aF vð Þ þ 1� að ÞF v=cð Þ½ �n�2 EL � EHð Þ

� v� 1� F vð Þ
f vð Þ


 �
f vð Þf c=vð Þ v

c
1

c
dv

¼ � EH � ELð Þ
Z 1

0

vf vð Þ � 1� F vð Þð Þ½ �

� aF vð Þ þ 1� að ÞF v=cð Þ½ �n�2f v=cð Þ v
c
1

c
dv:

ðA24Þ
Notice that

R
0

1[vf(v)� (1�F(v))]dv =0 and vf(v)�
(1�F(v))) crosses zero once: first negative, then pos-
itive. Assume the crossing point is at v0. If � aF vð Þþ½
1� að ÞF v=rð Þ�n�2f v=rð Þ v

c2 is an decreasing function of

v, or

B
2 aF vð Þ þ 1� að ÞF v=cð Þ½ �n�1=BcBvV0; ðA25Þ

we can have

Z 1

0

vf vð Þ � 1� F vð Þð Þ½ � aF vð Þ þ 1� að ÞF v=cð Þ½ �n�2

� f v=cð Þ v
c
1

c
dv

¼
Z v0

0

vf vð Þ� 1�F vð Þð Þ½ � aF vð Þþ 1�að ÞF v=cð Þ½ �n�2

� f v=cð Þ v
c
1

c
dvþ

Z 1

v0

vf vð Þ� 1� F vð Þð Þ½ �

� aF vð Þ þ 1� að ÞF v=cð Þ½ �n�2f v=cð Þ v
c
1

c
dv

N aF v0ð Þ þ 1� að ÞF v0=cð Þ½ �n�2f v0=cð Þ

� v0

c
1

c

Z 1

0

vf vð Þ � 1� F vð Þð Þ½ �dv ¼ 0: ðA26Þ

Hence IHR and (A25) are sufficient conditions for

c**b1. 5

A.6. Proof of Corollary 1

It can be verified that c**b1. Substituting the gen-

eral distribution with an uniform one in (A20),

G cð Þ ¼
Z 1

0

acþ 1� að Þ½ �n�2vn�2

� EL 2v� 1½ � � EH 2cv� 1½ �f gvdv ¼ 0: ðA27Þ

After integrating,

G cð Þ ¼ acþ 1� að Þ½ �n�2

� 2EL

nþ 1
� EL

n
� 2cEH

nþ 1
þ EH

n

� �
¼ 0; ðA28Þ

implying c** ¼ n�1ð ÞELþ nþ1ð ÞEH

2nEH
. 5

A.7. The marginal impact of changing c on winning

probabilities

The marginal impact of changing c on the winning

probability of an L-type bidder with valuation v is

B

Bc
aF cvð Þ þ 1� að ÞF vð Þ½ �n�1

� �

¼ a n� 1ð Þ aF cvð Þ þ 1� að ÞF vð Þ½ �n�2f cvð Þv;
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and on the winning probability of an H-type bidder with

valuation cv is

B

Bc
aF xð Þ þ 1� að ÞF x=cð Þ½ �n�1

� �
jx¼cv

¼� 1�að Þ n�1ð Þ aF cvð Þþ 1�að ÞF vð Þ½ �n�2f vð Þ v
c
:

The number of L-type bidders on a small valuation

segment [v,v +dv] is (1�a)f(v)dv. H-type bidders who

bid the same score as the former are on the valuation

segment [cv,cv +cdv], with an expected number of

af(cv)cdv. We can easily verify that the marginal impact

of changing c on the aggregate winning probability of

the two segments:

B

Bc
aF cvð Þ þ 1� að ÞF vð Þ½ �n�1

� �
1� að Þf vð Þdv

þ B

Bc
aF xð Þþ 1�að ÞF x=cð Þ½ �n�1

� �
jx¼cvaf cvð Þcdv ¼ 0:

In other words, a marginal increase in c leads to a

redistribution of winning probabilities from H-type

bidders to their L-type counterpart who bid the same

score.
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