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Optimal Keyword Auctions for Optimal User Experiences 

 

Abstract: Poor user experiences with search advertisements can lead to ad avoidance thus 

reduce search engine’s long-term revenue. We capture the effect of negative user experiences on 

search engine’s future revenue in a new variable called “shadow costs” and examine the optimal 

keyword auction mechanisms (KAMs) in a general model that takes into account advertiser-

specific and position-specific shadow costs. We show that the optimal KAMs can be 

implemented in an ex-post equilibrium with a “progressive second price” payment rule. 

Furthermore, under a few special but practically relevant cases, the optimal KAM takes the form 

of relatively simple scoring auctions. We show that minimum bids in these scoring auctions may 

be advertiser- or position- specific and the allocation rule may or may not be greedy. Our results 

highlight impact of shadow costs on keyword auction designs and hold implications for search 

engines, advertisers, and Internet users.  
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1.  Introduction 

Keyword advertising, also known as sponsored search, is a form of advertising that appears 

on search engine result pages. According to a report commissioned by Interactive Advertising 

Bureau (IAB 2012) [24], in 2011 keyword advertising generated $14.8 billion and accounted for 

46.5% of the total Internet advertising revenue in the United States. Not surprisingly, given the 

economic significance of keyword advertising, academics have paid much attention to keyword 

auctions, a special auction mechanism for allocating keyword advertising slots. To participate in 

a keyword auction, say for phrase “hotels in Las Vegas”, each advertiser submits a cost-per-click 

(CPC) bid (e.g., $1 per click) together with a clickable, text-based advertisement. All bids are 

collected and ranked, the highest ranked advertisements will automatically appear in the search 

result page, and advertisers will pay each time when their advertisements get clicked.  

It is now well understood that to ensure advertising positions go to advertisers who value 

them the most, CPC bids should be weighted by click-through rates (CTRs) [4, 17, 28, 29]. This 

weighting scheme, first introduced by Google, promotes more relevant advertisements to top 

positions and provides strong incentives for advertisers to achieve and maintain high CTRs. 

However, high CTRs are not synonymous with good user experiences. Sometimes advertisers 

may pursue high CTRs at the cost of user experience and search engine’s long run revenue [6].  

Consider an example where an advertiser uses keyword advertisements to sell counterfeit 

goods. This advertiser may get clicks from many uninformed users, thus enjoy a high CTR; but 

after users finding out about the truth, they are likely more to avoid clicking keyword 

advertisements in the future – thus reducing search engines’ long run revenue. In fact, bad user 

experiences can be caused by many other factors, including poor relevance between landing 
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pages and advertisements, slow loading landing pages, lack of original content,1 and offensive, 

fraudulent, or harmful content. Bad user experiences may also be caused by the way 

advertisements are placed on a page: intrusive or excessive advertisements may result in more 

clicks but also bad user experiences. Plenty of research has shown that poor user experiences can 

cause users to avoid advertisements or to develop negative associations toward advertised 

products [11, 37]. Users will learn over time to tune out advertisements or advertising positions 

when they expect them to be useless, leading to so-called “ad blindness” [13, 34].  

Previous examples suggest that showing an advertisement may be costly to search engines 

after all, in the form of future revenue losses due to ad avoidance or “ad blindness.” However, 

existing research on keyword auction (e.g., [3, 14, 39]) and optimal keyword auction design (e.g., 

[18, 25, 28]) often makes a simplifying assumption that search engines incur zero cost to show 

an advertisement. To our knowledge, Abrams and Schwarz [1] is the first to recognize such 

“hidden costs.” They argue that because a user’s future propensity to click on ads is influenced 

by his experience with past clicks, poor user experience poses a negative externality on the 

search engine in the form of reducing the future stream of revenue from a user by some amount.  

This paper builds on and extends Abrams and Schwarz’s work on hidden costs by proposing 

that search engines may incur a cost for showing an advertisement - in the sense of reduced 

future revenue stream – both before and after clicking, and the cost may be attributed to 

advertisers, positions, or both. Different from Abrams and Schwarz [1], we believe that bad user 

experiences, hence costs, can occur before clicking (e.g., by seeing an offensive ad) and because 

of advertising positions (e.g., an obstructive position). We collectively call such costs “shadow 

                                                        
1 For example, some sites use a practice called content farming, i.e., using automated means (e.g., scrapping content from other 

sites) to generate content that targets users who search for popular terms. These sites are often considered shallow, unoriginal, and 

thus detrimental to user experiences.  
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costs” for they are “shadow of the future” for search engines.2  

The first goal of this paper is to examine how to design optimal (i.e. revenue maximizing) 

keyword auction mechanisms (KAMs) in the presence of shadow costs. Specifically, we are 

interested in the optimal way of incorporating shadow costs in keyword auction designs. Some 

efforts are already underway in keyword advertising practice. Search engines have recently 

incorporated shadow-cost related factors such as relevance and landing page quality in the 

calculation of “quality scores”, which are essentially a weighting factor for CPC bids.3 Intuition 

suggests that this weighting scheme, while appropriate for incorporating CTRs in keyword 

auctions, may not be optimal for shadow costs. Hence, our first goal is to derive the optimal 

mechanism for keyword advertising in the presence of shadow costs. Our goal is different from 

Abrams and Schwarz’s [1], who focus on developing an efficient Generalized Second Price (GSP) 

auction [14].   

Our second goal is to use shadow costs to explain several phenomenon in keyword auctions 

that are largely unaccounted for by existing models. First, we hope to explain why search engines 

sometimes choose not to fill a position, even when there is a demand for it. Moreover, why 

positions are sometimes filled in a non-greedy fashion, e.g., positions on the side of a page are in 

fact filled before positions on top of the page. Second, we hope to explain why it makes sense to 

impose advertiser-specific or position-specific minimum bids. In absence of shadow costs, as we 

show in this paper, the optimal minimum bid should be the same across advertisers and positions. 

But in practice, search engines impose different minimum bids for advertisers and require higher 

“quality scores” for positions on top of the page.  

                                                        
2 Shadow costs, when taking negative values, can model positive externality induced by good user experiences.    
3 Google does not provide detailed formula for its Quality Score calculation, but indicates that quality score is firstly based CTRs, 

but also takes into account relevance and quality of landing page, among other factors. (see 

http://support.google.com/adwords/bin/answer.py?hl=en&answer=2454010 for more information).  
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We note that it is not the goal of this paper to develop strategies for empirically estimating 

shadow costs, which is obviously an important task. While estimating shadow costs seems 

challenging, we believe it is still possible. Search engines already have some measures of the 

quality of advertiser’s landing page, such as loading speed and ranking in organic search results. 

Using content analysis, search engines may also evaluate the relevance of a landing page to 

advertisements. Search engines can potentially extract user-experience indicators from user 

behavioral data or user feedback data. For example, one may identify unsatisfactory user 

experiences by mining the duration and pattern of search sessions. By relating user experience 

indicators to users’ subsequent clicking behavior, search engines can evaluate the long run 

impact of bad user experiences, thus to infer shadow costs. 

Our work consists of two parts. In the first part, we characterize the optimal KAM in a 

general specification where CTRs and shadow costs can depend on both advertisements and 

positions. We firstly characterize the optimal KAMs in terms of the probabilities of assigning 

advertisers to each position and the expected payment by each advertiser. We then obtain a 

specific optimal KAM and show that it is dominant-strategy incentive compatible. In the second 

part, we look for special cases in which the optimal allocation and payment rules are simple and 

deterministic. We examine three special cases: (I) without shadow cost, (II) with advertiser-

specific shadow cost, and (III) with both position-specific and advertiser-specific shadow costs. 

We use insights from these special cases to draw practical implications including designing 

optimal scoring rules and minimum bid policies. 

Our research makes the following contributions. First, we add to the literature of keyword 

advertising by introducing the concept of shadow costs and evaluating its impact on optimal 

KAMs. We generalize the notion of hidden costs in the literature [1] and characterize the optimal 
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KAMs with a general specification of click-through rates and shadow costs. We show that the 

optimal KAM can be implemented with a “progressive second price (PSP)” payment rule, one in 

which advertisers pay progressively higher marginal prices as they move to higher positions. We 

also show that the optimal KAMs can be implemented in a dominant-strategy equilibrium, i.e., 

one that does not depend on advertisers’ belief about other advertisers’ parameters. Second, we 

demonstrate the practical value of our framework by showing that the optimal KAMs can be 

implemented with relatively simple scoring auctions in special but relevant cases. By analyzing 

these scoring auctions, we provide several useful guidelines on optimal scoring rules and 

minimum bids.  

The paper is structured as follows: next we discuss the related literature followed by a 

description of our model framework. In section 4 we characterize the optimal KAMs under a 

general setting. In section 5 we derive explicit KAMs under three special model specifications. 

Finally, we discuss the implications of our findings for search engines, advertisers, and Internet 

users and suggest a few future research directions.   

 

2.  Related Research 

Our research is related to a growing literature on keyword auctions. One stream of research 

focuses on characterizing the equilibria of keyword auctions. Edelman et al. [14] and Varian [39] 

independently characterize keyword auction as a generalized second price (GSP) auction, where 

each winner only needs to pay the minimum price to maintain his current position. They find that 

the GSP auction has no truth-telling equilibrium, yet it is simple and generally generates higher 

equilibrium revenue than the classic Vickrey–Clarke–Groves (VCG) mechanism. Several papers 

have subsequently examined other properties of the GSP auction and its relationship with VCG 
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[5, 8, 15, 33]. Another stream of research focuses on the design of keyword auctions in terms of 

ranking rules [27-29, 40] and minimum bids [30, 38]. Chen et al. [9] treat keyword auctions as 

auctions of divisible goods and derives revenue-optimizing share structure. Liu and Viswanathan 

[30] and Dellarocas [12] study the choice of pricing schemes for keyword advertising. Liu and 

Viswanathan [30] and Zhu and Wilbur [44] examine the phenomenon of “hybrid auctions” in 

which advertisers are allowed to choose between CPC and CPM (cost per mille impression) bids. 

Several authors have examined advertising auctions in connection to product market competition 

[42] and organic listings [26, 41]. Unlike previous papers that focus on a particular keyword 

auction design, we seek the optimal design of KAMs among all candidate mechanisms.  

The empirical literature on keyword auctions is also growing. Zhang and Feng [43] 

document and explain the cyclical bidding patterns in keyword auctions. Animesh et al. [4] find 

that the quality-weighted ranking used by Google can somewhat overcome the adverse selection 

problem in keyword auctions. Ghose and Yang [19] and Agarwal et al. [2] demonstrate the 

nontrivial relationship between positions of the advertisement, click-through rates, and 

advertisers’ profits. Ostrovsky and Schwarz [38] find in a large-scale field experiment that 

introduction of theory-driven reserve prices can substantially enhance search engine’s revenue. 

Goldfarb and Tucker [20] study how keyword advertising interacts with organic search and 

offline advertising.  

To our knowledge, only few papers have considered notions related to shadow costs. Gonen 

and Vassilvitskii [21] analyze the existence of a symmetric Nash equilibrium under GSP auctions 

when there is a position-specific reserve price. They propose a “bi-ladder” auction for a truthful 

equilibrium to exist. Abrams and Schwarz [1] introduce an advertiser-specific “hidden cost” 

under a GSP auction. They argue that by subtracting the hidden cost from bid, search engines can 
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encourage advertisers to create user experience and maximize efficiency. However, their “hidden 

costs” are advertiser-specific but not position-specific. They do not consider mechanisms other 

than GSP.  

Athey and Ellison [6] examine a model that endogenizes search engine users’ search costs. 

They show that with consumer search costs, search engines should optimally use reserve prices 

and CTR-weighted auctions may not be efficient. Search cost can be viewed as a foundation for 

shadow costs because without search costs, users will always find the best website and prior 

experiences do not matter. A few other papers have also examined search costs and their 

implications [10, 41]. Our paper has significantly different goals from these papers.  

Our research follows the theory of mechanism design, pioneered by Hurwicz [23], Myerson 

[36], and Harris and Raviv [22]. The literature of mechanism design asks how a principal can 

optimally allocate goods among agents who have private information on the valuation of goods. 

Myerson’s [36] seminal work has laid the foundation for the mechanism design approach. He 

shows that a standard auction with a minimum bid is optimal for selling a single object under a 

range of settings. Many advances have since been made in the mechanism design literature, such 

as optimal mechanism for a multi-product monopolist with unit demand [22] and for 

homogeneous multi objects [31].  

Several authors have applied the mechanism design approach to keyword auctions before us. 

Iyengar and Kumar [25] provide the first analysis of optimal mechanism design in keyword 

auction settings. They characterize the optimal KAM under a setting where CTRs are both 

advertiser and position specific. Garg and Narahari [18] obtain optimal KAMs under settings 

when advertisers have identical click-through rates and then compare the optimal KAM with 

GSP and VCG mechanisms. Feng [16] view keyword auctions as a problem of allocating 
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multiple objects for which bidders have a common ranking but nonlinear utility. She shows that 

the optimal allocation may not be greedy. We also find non-greedy optimal allocation in our 

paper but for entirely different reasons. None of existing mechanism design papers considers 

shadow costs.   

3.  The Model Setup 

3.1 The Keyword Auction Environment 

In the keyword auction environment, n risk-neutral advertisers (bidders) compete for k 

positions at a risk-neutral search engine (auctioneer). Let iN =  n,...,2,1    index 

advertisers/advertisements and  jK =  k,...,2,1  index positions. We follow the convention that 

a higher position has a smaller index number.  

Advertiser i has an expected valuation vi per click (valuation for short). We assume that vi is 

independently drawn from ],[ vv  according to distribution Fi() which has a strictly positive and 

continuously differentiable density fi(). We also assume that the hazard rate of each distribution 

function, )](1/[)( 
i

F
i

f , is non-decreasing.  

An advertisement’s click-through rate (CTR) may depend on both advertisement and 

position. We denote αij as the CTR of advertiser i at position j. We assume that the higher the 

position, the higher the CTR,4 i.e.: 

αi1 > αi2 > … > αik,  i  N 

The risk-neutral search engine incurs a shadow cost by displaying advertisements. As 

discussed before, shadow cost is interpreted as the reduction in search engine’s long-term 

                                                        
4 Our results still hold if we generalize this assumption to αi1  αi2  … αik, i  N. In fact, this assumption can be generalized 

to the case where the ordering of positions by CTR is the same across all advertisers. If the ordering of advertisement positions 

by CTR does not coincide with the natural order of positions, we can always renumber the positions.  
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revenue when advertisements cause unsatisfactory user experiences. Like click-through rates, 

shadow costs may depend on both advertisement and position. We denote cij as the shadow cost 

of displaying advertiser i at position j. Shadow costs can be negative, in which case an 

advertisement positively affects the search engine’s long-term profits.  

Consistent with the keyword auction practice, we assume that advertisers bid on CPC. Let bi 

denote the CPC bid by advertiser i.  

Let v = (v1, v2, …, vn)
T and b = (b1, b2, …, bn)

T denote valuations and bids of all advertisers. 

Let v－i 
 and b－i 

 denote valuations and bids of all advertisers except i. We denote αi = (αi1, αi2, …, 

αik)
 as advertiser i’s CTRs at all positions and let α = (α1, α2, …, αn)

T. ci and c are similarly 

defined. 

We make the following informational assumptions. The per-click valuation vi is advertiser 

i’s private information but the distribution functions    NiiF   are common knowledge. As in Liu 

and Chen [28], Iyengar and Kumar [25], and Liu et al. [29], an advertiser’s click-through rate 

vector αi is known by the advertiser i and the search engine, but not by other advertisers. We also 

assume that only the search engine knows the shadow costs c.5 Throughout the paper, we assume 

that valuations, CTRs, and shadow costs are independent. 

3.2 The Keyword Auction Mechanism 

A keyword auction mechanism (KAM) consists two sets of rules: an allocation rule that 

determines how positions are allocated among advertisers, and a payment rule that determines 

how much they must pay. By the revelation principle [35], it is without loss of generality to focus 

on a set of direct mechanisms, i.e. mechanisms in which agents are simply asked to report their 

valuations.  
                                                        
5 Our main results still hold if advertisers know their shadow costs, if they do not know their CTR vector, or if CTRs and shadow 

costs are public information. The main assumption here is that the search engine can estimate the CTRs and shadow costs.  
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The allocation rule. The assignment rule specifies the probabilities of assigning advertisers 

to positions. Denote pij(b|α, c) (pij(b) for short) as the probability of assigning advertiser i to 

position j given bids b, click-through rates α, and shadow costs c. Because an advertiser achieves 

different CTRs at different positions, the expected number of clicks an advertiser gets is 

    bb 



k

j
ijiji pp

1

   (1)  

We call  bip  the total clicks assigned to advertiser i.  

The allocation rule p is a set of assignment probability functions 

p =   bijp  

that satisfies the following feasibility conditions, 

   ,1
1




n

i
ijp b   j  K  (2)  

     ,1
1




k

j
ijp b  i  N  (3)  

Conditions (2) and (3) require that, at any time, an advertiser can appear in at most one 

position and a position can be assigned to at most one advertiser.   

The Payment Rule. A payment rule specifies the pay rates for advertisers. Denote mij(b|α, 

c) (mij(b) for short) as the CPC to be paid by advertiser i at position j, given bids b, CTRs α, and 

shadow costs c. The payment rule m is a set of pay rate functions: 

m =   bijm  

An advertiser’s total payment is the sum of the payments across all positions that she is possibly 

assigned to. Given the assignment probabilities pij(b) and pay rate functions mij(b),  an advertiser 

i’s total payment is given by: 
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        .
1

bbb ij

k

j
ijiji mpm 



    (4) 

By the above notations, we denote a KAM as (p, m). Because risk neutral advertisers only 

care about total clicks and total payment, we can also denote a KAM by (   bijp ,   bijm ).  

The timeline of the game is as follows. First, the search engine announces the mechanism (p, 

m). Next valuations v, shadow costs c, and CTRs α are realized. Each advertiser i learns vi and αi, 

and the search engine learns c and α. Then, each advertiser i submits a bid bi based on the 

advertiser’s valuation vi and CTR αi. The search engine allocates the positions to advertisers 

based on bids b, CTRs α, and shadow costs c by the allocation rule p and determines the total 

payment of each advertiser by the payment rule m. 

Denote πi (bi | vi) as advertiser i’s expected payoff if her valuation is vi and she bids bi. We 

are interested in KAMs that are individually rational (IR) and incentive compatible (IC), which 

are defined as follows:  

Definition 1 (IR): A KAM is individually rational if and only if 

 πi (vi | vi) ≥ 0,  vi ∈ ],[ vv   (5) 

Definition 2 (IC): A KAM is incentive compatible if and only if 

 πi (vi| vi) ≥ πi (bi| vi), bi∈ ],[ vv   (6) 

Intuitively, IR requires any participating advertiser to have a nonnegative expected payoff 

and IC requires that all advertisers find it optimal to report their true valuations. 

Definition 3 (Candidate Mechanism): We call (p, m) a candidate mechanism if it is IR, IC, 

and satisfies the feasibility constraints (2) and (3). 

4. The Optimal Keyword Auction Mechanism 

4.1 The Candidate KAM 
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Our first result characterizes the necessary and sufficient conditions for a candidate 

mechanism.  

Lemma 1 A KAM is a candidate mechanism if and only if the following conditions hold: 

(i)  ,)()|()|( dttpvvvv
iv

v iiiii    where  ),()( iii tpEEEtp
ii 

 vvαc . 

(ii)  ,0)|( vvi  

(iii) )(tpi  is non-decreasing in t, 

  (iv)  Conditions (2) and (3). 

Proof: All the proofs are deferred to the appendix. 

In Lemma 1, )(tpi  denotes advertiser i's expected total clicks, taken over all positions and 

unknown parameters, including valuation, CTRs, and shadow costs of other advertisers. (iii) 

suggests that expected total clicks must be non-decreasing in the advertiser's valuation. (i) 

suggests that an advertiser's expected payoff is completed determined by  )|( vvi  and )(tpi . 

This important observation leads to the following result on the search engine’s expected profit. 

Lemma 2 The search engine’s expected profit under a candidate KAM is 

 
 






























n

i
i

k

j

n

i ij

ij

ii

ii
iijij vv

c

vf

vF
vpEEE

11 1
0 )|(

)(

)(1
)( 


 vvαc

 (7) 

The result in Lemma 2 suggests that the expected revenue of the search engine is 

completely determined by the allocation rule p and )}|({ vvi . In other words, if two 

mechanisms result in the same allocation, they should generate identical expected revenues for 

the search engine. This result parallels the revenue equivalence theorem for single-object 

auctions [36]. The intuition for this result can be seen from Lemma 1(i): an advertiser’s expected 

payment is completely determined by the allocation rule p and the expected payoffs of the lowest 
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valuation advertisers, )}|({ vvi . Therefore, the expected revenue of the search engine, which is 

the sum of expected payment from advertisers, is also completely determined by p and 

)}|({ vvi .  

4.2 The Optimal KAM 

Lemma 2 implies that a candidate KAM (p, m) is optimal if )}({ ijp  and )}|({ vvi  

maximizes (7). To meet the IR condition, we must have 0)|( vvi . Because the choice of 

)}|({ vvi  does not affect the optimal choice of )}({ ijp , we optimally set 0)|( vvi  and 

choose p according to the following optimization problem:  

 
)()(..

)(

)(1
)(max

1 1
0 ivandiiitsc

vf

vF
vpEEE

k

j

n

i
ij

ii

ii
iijij





























 
 

 

 vvαcp  (OP) 

Corollary 1 (Characteristics of the Optimal KAM) A candidate KAM (p, m) is an optimal 

mechanism if 0)|( vvi  and p solves (OP).  

We denote  

)(

)(1
)(

ii

ii
iii vf

vF
vvJ


  

as advertiser i’s virtual valuation and 

    ijiiijiij cvJvw   

as the net worth of advertiser i at position j to the search engine. By the non-decreasing hazard 

rate assumption, Ji(vi) and wij(vi) are strictly increasing in vi. 
 

Corollary 1 implies that the optimal KAM maximizes total expected net worth of all 

advertisers at their assigned positions. This result is an extension of the optimal mechanism for a 

single object which maximizes the total expected virtual valuation [36]. In comparison, the net 
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worth extends virtual valuation by incorporating CTRs as a multiplier and shadow costs as a 

reduction. More important, virtual valuation differs only across advertisers; but net worth differs 

across both advertisers and positions. These differences hold implications for the optimal 

mechanisms.  

Built on Corollary 1, we now complete the characterization of the optimal KAM by 

deriving the optimal payment rules. 

Theorem 1 If an allocation rule p solves (OP) and a payment rule m satisfies 

 Nidttpbpbbm
ib

v iiiiiiiii    ,,),(),(),( bbbb  (8) 

then (p, m) is an optimal KAM.  

4.3  Dominant Strategy Incentive-Compatible Optimal KAM 

Theorem 1 characterizes the optimal mechanisms in a Bayesian environment in terms of 

expected total clicks and total payments. Such mechanisms are not unique because multiple 

mechanisms can lead to the same expected revenue for the search engine and expected payoffs 

for advertisers. Bayesian mechanisms are sometimes criticized for being too weak because if the 

common knowledge assumption is violated (e.g., when players have different beliefs about 

valuation distribution), the allocation may be far from optimal. As a remedy, recent work 

emphasizes ex-post mechanisms, which require the decision of each player to be optimal against 

the strategies of other players, regardless of their realized types [7]. Ex-post mechanisms are 

"prior-free", thus considered more robust for practical use.  

In the following, we define a specific optimal KAM and show that it is dominant strategy 

incentive compatible, thus an ex-post mechanism. We maintain that the search engine knows the 

distribution of valuations but do not require advertisers to have such knowledge.  

Lemma 3 The allocation rule p solves (OP) if it solves 
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  vαcvP ,,),(..,)()(   max
1 1

anyforivtscvJp
k

j

n

i
ijiiijij

 

  (OP) 

In the above, the allocation rule p optimizes (OP) point-wise. The allocation is chosen to 

maximize the total net worth of all advertisers for each given scenario (c, α, v). The above 

allocation rule is equivalent to an alternative allocation rule p based on reported values: 

 
  bαcbP ,,),(..,)()(   max

1 1

anyforivtscbJp
k

j

n

i
ijiiijij

 


   

(9) 

provided that advertisers report truthfully (which we will show in the next lemma).  

We further denote (i)  kn  ,,2,1    as the position assigned to advertiser i under the 

allocation rule (9). We say that an advertiser is assigned if (i) ≤ k and unassigned, otherwise.  

When advertisers under-report their valuations, they may attain lower positions. We use 

 ijb  to denote the minimum bids required to attain these lower positions. Specifically, for any 

position j ≥ (i), let  

   jtitb iij  b,||min   

be the minimal bid advertiser i must submit to win position j or higher given other advertisers’ 

bids bi and the allocation rule (9). Note that not all positions are attainable by i (for example, 

position j may be never assigned to i when the shadow cost cij is very large). When position j is 

unattainable for i, bij is, by definition, the same as the minimum bid for the position just above it 

bi,j1. Clearly, by this definition, bij  is non-decreasing as position j gets higher.  

Now we define a payment rule m as follows: 
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

otherwise
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


b  (10) 

where αi,k+1 = 0. We graphically illustrate this payment rule in Figure 1. Suppose there are a total 
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of 8 positions and advertiser i is allocated to position 3 under truthful reporting. Intuitively, as 

advertiser i raises the bid from 0 to bi8, i obtains position 8,6 and i’s total clicks increase from 0 to 

αi8. For the additional clicks (αi8) received, advertiser i pays bi8 per click. As advertiser i raises 

the bid to bi7, i gains additional clicks (αi8   αi7) and pays bi7 for these additional clicks. As i 

reaches higher and higher positions, i pays progressively higher marginal prices for additional 

clicks i receives, hence we call this payment rule a progressive second price (PSP) rule. 

v i

b i4

b i3

b i6

b i7

b i8

 i3 i4 i6 i7 i8

Valuation/Bid

Advertiser i's Payoff

Advertiser i 's Payment

E

A B

F

C
Total clicks

D

O

 
Figure 1. Advertiser i’s payment and payoff 

Assume truthful bidding, the total valuation created by assigning advertiser i to position 3 is 

represented by area OABCO. The staircase curve (DEF) represents the marginal price paid by 

advertiser i as a function of i’s total clicks. The advertiser pays the area below DEF and retains 

the area above.  

It is easy to see from Figure 1 that when i bids lower than vi but higher than bi3, the total 

payment and payoff remain the same. If i bids lower than bi3, then i receives a strictly lower 

payoff. She is strictly worse off for obtaining position 2, as the additional payment (αi2- αi3)bi2 

                                                        
6 If advertiser i cannot obtain position k, we can just skip to the next position i can get. 
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exceeds the additional valuation (αi2- αi3)vi. So every advertiser achieves maximal payoff with 

truthful bidding, regardless of their beliefs about valuations, CTRs, and shadow costs of other 

advertisers.  

Lemma 4 Given the allocation rule (9) and payment rule (10), truthful bidding is a 

dominant strategy for any advertiser and any bids bi, CTRs α and shadow costs c. 

Theorem 2 (9) and (10) define an optimal KAM that is dominant strategy incentive 

compatible.   

Remark 1: Under the GSP payment rule, advertiser i’s total payment would be )()( iiii b  . So 

if we fix bids, an advertiser’s PSP payment is lower than the GSP payment. This does not imply, 

however, that GSP generates higher revenue than a PSP mechanism. This is because the GSP 

payment rule does not induce truthful bidding and advertisers generally bid lower than their true 

valuations under GSP [14].  

Remark 2: Because truthful bidding is a dominant strategy, advertisers’ optimal bidding 

strategies are free of their priors on other advertisers’ valuations, CTRs, and shadow costs. The 

expected revenue achieved by the KAM, however, depends on how accurately the search engine 

can estimate input parameters including CTRs, shadow costs, and distribution of valuations. 

More accurate estimates of these parameters can lead to higher realized valuation and higher 

expected revenue.  

5. The Optimal KAMs under Special Cases 

By studying several special cases, we hope to achieve two goals: deriving an explicit 

allocation rule that is simple and deterministic and obtaining additional insights about the 

characteristics of the optimal KAM. There are two reasons to emphasize simplicity. First, as 

suggested by Milgrom [32], simplicity is highly valued in practical mechanism design. Second, 
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speedy matching of advertisers and positions is crucial in real-time keyword auctions in which 

matching must be resolved in a fraction of a second. Throughout this section, we assume that  

 (symmetric distribution) Ji() = J()  

 (separable CTRs)  αij = p
j

a
i  , where 01 2121  

p
nk

p
k

p
k

p
k

pp    

 (separable shadow cost) a
i

p
j

a
i

p
jij ccc   

 The first assumption states that advertisers’ valuations are drawn from the same distribution. 

This assumption is not essential for deriving explicit optimal allocation rules and payment rules. 

We make this assumption so that the scoring function is the same for every advertiser. The 

second assumption, known as the separability assumption of the CTRs [3, 14, 39], states that 

CTRs can be separated into an advertiser factor a
i  and a position factor p

j  (interpreted as the 

“prominence” of a position).  

The third assumption states that shadow cost is separated into a position-specific (per-

impression) component p
jc  and an advertisement-specific (per-click) component a

ic . The former 

arises because position attributes such as location on a page, size, or background color affect the 

before-click user experience (e.g., top of the page positions are more intrusive). The latter arises 

because post-click user experience can be affected by advertiser-specific factors such as the 

quality of landing page and website (e.g. a link farm or unoriginal content will invoke bad user 

experience).  

The advertisement-specific component a
ic  can in fact capture both before- and post-click 

bad user experiences imposed by an advertiser. To see, we can introduce an advertiser-specific 

shadow cost component in the form of before
i

p
j c  and redefine ia

i

before
i

i c
c

c 


'  as the new 
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advertiser-specific per-click cost.  

Definition 4 (Scoring Mechanism): A KAM is a scoring mechanism if there exists a 

scoring function s: N → R 7 such that a high-scored advertiser is allocated before a low-scored 

advertiser: i.e., for any i, l  N, s(i) > s(l)   (i) < (l).  

Definition 5 (Greedy Allocation): An allocation rule is greedy if it always fills position j 

before j + 1.  

The optimal KAM may not be greedy because if the shadow cost for a position is 

sufficiently high, it may be left empty while lower positions are filled (see Example 4). The 

optimal KAM may not be a scoring mechanism either -- the following example shows that the 

highest position may not be filled by advertisers with the highest net worth. 

Example 1: Suppose there are two positions and two advertisers. If w11=11, w12=7, w21=7, 

and w22=5, it is optimal to assign advertiser 1 to position 1 and advertiser 2 to position 2 with a 

total net worth of 16. If w11=8 instead, the two advertisers are switched under the optimal 

allocation with a total net worth of 14. 

Next we discuss three different cases based on assumptions about shadow costs. 

5.1 Case I. No Shadow Costs ( 0 a
i

p
j cc ) 

This is the case studied by most of the extant literature on keyword auctions. We use this 

case as a benchmark for our subsequent results. When shadow costs are absent and CTRs are 

separable, it is straightforward to show that the optimal KAM is a scoring mechanism with 

greedy allocation. 

 Theorem 3 Under assumption of no shadow costs, the optimal KAM is a greedy scoring 

mechanism with scoring function  

                                                        
7
 We require all scoring functions to be in the form of s(i) = g(vi, αi, ci).  
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sI(i)= a
i J(vi). 

Specifically, in the optimal allocation, advertisers with positive sI scores are assigned by the 

descending order of their sI scores in a greedy fashion. The minimum bid r for all advertisers and 

positions is the solution to J(r)=0. 

By Theorem 3, the optimal allocation in this case involves filling the positions 1 to k in a 

greedy way by the order of sI scores from high to low, until there are no more positions or no 

more advertisers with positive sI scores.  

The necessary and sufficient condition for an advertiser to have a positive sI score is that the 

advertiser’s valuation must be greater than r. So the optimal KAM entails a same minimum bid 

(or reserve price) r for all bidders and positions, regardless the number of advertisers. This 

minimum bid does not depend on advertisers’ CTRs either.   

Example 2: Advertisers 1, 2, 3, and 4 compete for 3 advertisement positions. Let F(x) = x, 

x[0,1], then J(x)=2x1. Moreover, v1 = 1, v2 = 0.9, v3 = 0.8, v4 = 0.3, 2.0,8.0,1 321  ppp  , 

50.0,1.0,4.0,2.0 4321  aaaa  . Then sI(i)= a
i J(vi)=  12 i

a
i v  and the minimum bid is 

r = 0.5. The optimal allocation and payments are calculated as follows. Note that bij  is calculated 

based on the definition in section 4.3. For example, it takes a minimum bid of 0.5, 0.575, and 

0.75 for advertiser 2 to get positions 3, 2, and 1 respectively. So advertiser 2’s CPC is calculated 

as      apappppp
21221233 /]75.0575.05.0[    = 0.595. 

Advertiser vi J(vi) 
a
i  sI(i) Position bi1 bi2 bi3 CPC 

1 1 1 0.2 0.2 2 / 0.65 0.5 0.6125 
2 0.9 0.8 0.4 0.32 1 0.75 0.575 0.5 0.595 
3 0.8 0.6 0.1 0.06 3 / / 0.5 0.5 
4 0.3 0.4 0.05 0.02 / / / / 0 

 

5.2 Case II. Shadow Costs Are Advertiser-specific ( 0,0  a
i

p
j cc ) 
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When there is only an advertiser-specific cost, the shadow cost takes the form of 

a
i

p
j

a
iij cc  . This case is most meaningful when the layout and format of advertisement 

positions are carefully designed to minimize intrusion and negative user experiences mainly 

come from “bad” advertisements.  

Theorem 4 Under the assumption a
i

p
j

a
iij cc  , the optimal KAM is a greedy scoring 

mechanism with the following scoring function  

sII(i)= a
i [J(vi)  a

ic ] 

Specifically, in the optimal allocation, advertisers with positive sII scores are assigned by the 

descending order of their sII scores in a greedy fashion. The implied minimum bid for advertiser i 

is the solution to  

J(ri)  a
ic =0 

The optimal allocation is similar to that in §5.1: filling the positions 1 to k sequentially by 

the descending order of sII scores, until no more positions or no more advertisers with positive sII 

scores. The only difference lies in the scoring rule. Like in §5.1, the optimal KAM is a scoring 

mechanism with a greedy allocation rule.  

Given the formula for sII scores, the minimum bid is a function of advertiser-specific 

shadow cost a
ic  but is not a function of position or advertisers’ CTRs. an advertiser with a higher 

shadow cost must pay a higher minimum bid to be eligible.  

Example 3: Continue with Example 2. Let 3.0,7.0,5.0,2.0 4321  aaaa cccc . Then sII(i) 

= a
i [J(vi)  a

ic ] = ]12[ a
ii

a
i cv  . The minimum bid for advertiser i is calculated as r = 

(1+ a
ic )/2.  The optimal allocation and payments are calculated as follows. 

Advertiser vi J(vi) 
a
i  a

ic  sII(i) Position bi1 bi2 bi3 CPC 
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1 1 1 0.2 0.2 0.16 1 0.9 0.6 0.6 0.66 
2 0.9 0.8 0.4 0.5 0.12 2 / 0.75 0.75 0.75 
3 0.8 0.6 0.1 0.7 0.01 / / / / 0 
4 0.3 0.4 0.05 0.3 0.035 / / / / 0 

 

5.3 Case III. Shadow Costs Are Advertisement- and Position-specific ( 0,0  a
i

p
j cc ) 

When there are both an advertiser-specific per-click cost and a position-specific per-

impression cost, the shadow cost takes the form of a
i

p
j

a
i

p
jij ccc  . This case accommodates 

the general case in which negative user experiences can come both from intrusive advertisement 

placement and from irrelevant or offensive content after a user clicks through an advertisement. 

Theorem 5 Under the assumption a
i

p
j

a
i

p
jij ccc   the optimal KAM is a scoring mechanism 

with the following scoring function 

sIII(i) = a
i [J(vi)  a

ic ] 

Advertisers whose sIII scores exceed p
j

p
jc /  are assigned by the descending order of their sIII 

scores and the implied minimum bid for advertiser i at position j is the solution to 

a
i [J(rij)  a

ic ] = 
p
j

p
jc


. 

Moreover, if 

 p
k

p
k

p

p

p

p ccc


 

2

2

1

1
 (10) 

then the optimal KAM is a greedy one, i.e., advertisers who bid above minimum bids are 

assigned by the descending order of their sIII scores in a greedy fashion. 

Theorem 5 maintains that advertisers are ranked by the descending order of sIII scores, as in 

case II. A position is filled only when there exists an advertiser whose sIII score exceeds the 
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position’s per-click shadow cost. Because of position-specific and advertiser-specific shadow 

costs, the minimum bid may differ across advertisers and positions. An advertiser with a high 

click-through rate a
i   and low shadow cost a

ic  has a low minimum bid, whereas a position with 

a high shadow cost p
j

p
jc /  requires a high minimum bid. 

It should be note that positions may not be filled in a greedy fashion in this case, as 

illustrated by Example 4. A high position may be skipped in favor of low positions with lower 

per-click shadow costs. We show that the optimal allocation is guaranteed to be greedy under 

condition (10), which maintains that the per-click shadow cost does not decrease with position. 

That is, on a per-click basis, a lower position causes more harm to user experiences than a higher 

position. In general, we would expect the opposite to be true because users more likely click on 

advertisements at high positions by mistake.   

Example 4: Continue with example 3. Let 40.0,13.0,20.0
3

3

2

2

1

1 
p

p

p

p

p

p ccc


. Then sIII(i) = 

a
i [J(vi)  a

ic ] = ]12[ a
ii

a
i cv  . The minimum bids for advertiser i at positions 1, 2, 3 are  

(1+ a
ic +0.2/ a

i )/2, (1+ a
ic +1.3/ a

i )/2, and (1+ a
ic +0.4/ a

i )/2, respectively. In this case, position 2 

is unfilled due to a high per click shadow cost associated with position 2.  

Advertiser vi J(vi) 
a
i  a

ic  sIII(i) sIII(i) p
j

p
jc /  Position bi1 bi2 bi3 CPC 

1 1 1 0.2 0.2 0.16 0.14 1 0.9 0.9 0.7 0.86 
2 0.9 0.8 0.4 0.5 0.12 0.08 3 / / 0.8 0.8 
3 0.8 0.6 0.1 0.7 0.01 / / / / / 0 
4 0.3 0.4 0.05 0.3 0.035 / / / / / 0 

 

To summarize, all three special cases involve a scoring mechanism, but with different 

scoring rules and minimum bid policies. In the benchmark case (no shadow costs), the 

advertisers are ranked by virtual valuation ⨯ CTR and assigned to positions in a greedy fashion. 
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Advertisers are eligible in the optimal allocation only if their virtual valuations are positive. This 

implies a same minimum bid r for all advertisers and positions. In the second case with 

advertiser-specific shadow costs, advertisers are ranked by (virtual valuation - shadow cost) ⨯ 

CTR and assigned to positions in a greedy fashion. Advertisers are eligible in the optimal 

allocation only when their virtual valuations exceed shadow costs. This implies the optimal 

minimum bids are advertiser specific but not position specific (Theorem 4). In the third case with 

advertiser- and position-specific shadow costs, advertisers are ranked the same way as the second 

case but may not be assigned in a greedy fashion – a position with high per-click shadow cost 

may be skipped in favor of lower positions with low per-click shadow cost. In this case, the net 

worth of an advertisement must exceed the shadow cost of a position to be eligible in the optimal 

allocation (Theorem 5). Therefore, the minimum bid is both advertiser-specific and position-

specific. These results highlight the broad impact of shadow costs on the optimal keyword 

auction design and provide useful guidelines for practical keyword auction designs.  

 

6.  Discussion and Conclusion 

Search engines incur shadow costs when an advertisement negatively affects user 

experiences. We formulate keyword auction design as a mechanism design problem in which a 

search engine faces advertisers with private valuation per click, and CTRs and shadow costs 

differ across advertisers as well as positions. Our analysis on the optimal KAMs for the general 

setting and three special cases yield the following implications.  

Implications for minimum bids. In the optimal auction literature, minimum bid exists to 

exclude bidders who have negative virtual valuation. In previous research on optimal KAMs [18, 
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25], the optimal minimum bid exists purely for revenue considerations 8 and depends only on the 

distribution of valuations. Our findings for the case I (no shadow cost) are consistent with the 

previous papers: the optimal minimum bid is independent of advertiser’s CTRs and exists only 

for revenue considerations. But with shadow costs (cases II and III), optimal minimum bids exist 

not only for revenue considerations but also for social welfare considerations – a social-welfare 

maximizing allocation would exclude advertisers whose valuations are less than the shadow 

costs they create.  Thus shadow costs provide a social-welfare justification for the use of 

minimum bids. More important, the existence of shadow costs explains why minimum bids 

needs to be advertiser- or position- specific.  

Our analyses of specific cases suggest that minimum bid policies need careful design 

depending on the nature of shadow costs. When there are no shadow costs, the optimum bids 

should be the same across advertisers and positions and should be independent of number of 

bidders. When there are only advertiser-specific shadow costs, the minimum bids are advertiser 

specific but not position specific. The minimum bids are not directly unrelated to advertisers’ 

CTR. In contrast, when shadow costs have a position-specific component, minimum bids are no 

longer independent of CTRs: advertisers who have high CTRs should have a smaller minimum 

bid. In this case, minimum bids are also position specific. This finding provides theoretical 

guidelines on when minimum bids need to be position specific and when it should depend on 

advertisers’ CTRs.  

Implications for the number of positions to fill. From the perspective of optimal KAMs, 

some positions may be optimally left unfilled because no remaining advertisers can generate a 

positive net worth at these positions. When shadow costs consist of only an advertiser-specific 

                                                        
8  Minimum bids are used to increase auction revenue by forcing bidders to pay more. Minimum bids decrease efficiency 

because they exclude bidders who may have a positive valuation for the auctioned object.  
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component, this usually means high positions are filled before low positions -- i.e., a greedy 

allocation. However, when shadow cost consists of a position-specific component, high positions 

may be left unfilled. This finding provides theoretical justifications for the observation that 

search engines sometimes show no on top of the search results but only on the right side. 

According to case III, this is because the positions on top have high shadow costs such that no 

advertiser has a virtual valuation exceeding the position-specific shadow costs. But 

advertisement may still show up the right side because the shadow costs for right side positions 

are lower. Our result resonates with the empirical observation by Goldfarb and Tucker [20] that it 

may be undesirable to advertise on the most intrusive positions in targeted Internet advertising.  

Implications on how to incorporate shadow costs. At the beginning of the paper, we 

argue that user experience factors should be incorporated in keyword auctions. But how? Our 

results show that shadow costs enter the keyword auction through two main ways: scoring rules 

and minimum bids. Results in Case II suggest that the advertiser-specific shadow cost should be 

incorporated in both the scoring rule and minimum bids. Specifically, we need to subtract the 

advertiser-specific shadow cost from the advertiser’s scores and increase the minimum bid to 

compensate for the shadow cost imposed by the advertiser. In contrast, the position-specific 

component only impact minimum bid policies – minimum bids should differ across positions to 

reflect the different shadow costs associated with each position.  

It is also important to point out that shadow costs play a very different role in scoring rules 

and minimum bid policies than CTRs. Shadow costs should not enter scoring rules as a 

weighting factor as CTR does. Instead, (advertiser-specific) shadow costs should be subtracted 

from advertisers’ scores. Our proposed optimal mechanism differs from the prevailing model 

where factors related to shadow costs and CTRs are stuffed into a single weighting factor known 
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as “quality score”. Furthermore, as we show through the three special cases, shadow costs, not 

CTRs, are the main reason for using advertiser-  and position-specific minimum bids.  

Implications for search engines, advertisers, and consumers: Because our proposed 

mechanism penalizes advertisers with high shadow costs (and reward ones with negative shadow 

costs), advertisers have incentives to improve overall user experiences in the long run. For 

example, they can align advertisement better with the content of landing pages and optimize their 

sites for better user experience. Internet users are beneficiaries of our optimal keyword auction 

designs. In the short run, users are shielded from intrusive and excessive advertising and from 

“bad” advertisers. In the long run, because of advertisers’ effort in improving customer 

experience, users will find these advertisements more helpful. Search engines may suffer some 

short term revenue loss because of the exclusion of paying advertisers but they will benefit in the 

long run from improved user experiences.   

Limitations and future research. To navigate the complexity of introducing shadow costs, 

we have made simplifying assumptions. For example, we assumed the risk neutrality of 

advertisers and the search engine and the independence between valuations, CTRs, and shadow 

costs. In the analysis of special cases, we make additional assumptions such as separable CTRs. 

While empirical evidence refutes the separablility assumption, our interaction with keyword 

advertising professionals suggests that the discrepancy may be tolerable in pursuit of theoretical 

results.  

Additional research is needed to gain further insights on shadow costs. It is desirable to 

examine shadow costs from the social welfare point of view by incorporating users. Another 

potentially interesting extension is to examine how shadow costs interact with payment schemes, 

including CPC, CPM (cost-per mille-impressions), and cost-per-sale [30]. Our research also 
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raises many interesting empirical questions. For example, how large are the shadow costs? How 

costly is it for search engines to ignore shadow costs? Finally, future research should examine 

shadow costs in other advertising formats and platforms, including display and mobile 

advertising.  

As keyword advertising thrives in online and mobile environments, advertisers have learned 

to profit from boosting CTRs sometimes at the cost of user experiences. It is therefore important 

to incorporate shadow costs into the next generation of keyword auction designs. We hope our 

analyses highlight the distinct issues created by shadow costs and bridge the gap between 

keyword auction theory and practice.   
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Proof of Lemma 1:  

Since advertiser i only knows i’s valuation and CTRs, her expected payoff is 
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 (A.1) 

where  ),()( iiiii bpEEEbp
ii 

 vvαc  . 

(if part) Suppose conditions (i)~(iv) hold, we show the mechanism is candidate one. Of 

course, the condition (iv) implies conditions (2) and (3) in the definition of candidate KAM. By 

conditions (i) and (ii), we have 
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So the individual rationality condition (5) is met. 

From Eq. (A.1), conditions (i) and (iii),  
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where the first equality is due to Eq. (A.1), the second is due to condition (i), and the inequality 

is due to condition (iii). Thus the incentive compatibility condition (6) is met. We conclude that 

the mechanism that meets conditions (i) ~ (iv) is feasible. 

(only if part)  Suppose a KAM is candidate one: we now show that it must satisfy 

conditions (i)~(iv). Obviously, when the individual rationality condition (5) and allocation 

constraints (2) and (3) hold, the conditions (ii) and (iv) must also hold. 

Applying the incentive compatibility condition (6) and equality Eq. (A.1), we have 

)()()|()|()|( iiiiiiiiiiiii bpbvbbvbvv    
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i.e., 

)()()|()|( iiiiiiiiii bpbvbbvv   

Similarly, by an exchange of bi and vi, )()()|()|( iiiiiiiiii vpvbvvbb  , i.e., 

)()()|()|( iiiiiiiiii vpbvbbvv   

Therefore, )()()|()|()()( iiiiiiiiiiiiii vpbvbbvvbpbv   . Hence the condition (iii) 

must hold. Furthermore, πi (vi| vi) is non-decreasing and continuous, thus πi (vi| vi) is absolutely 

continuous and ..   ),(
)|(

eavp
dv

vvd
ii

i

iii 


 We conclude that condition (i) also holds.            □ 

 

Proof of Lemma 2： 

When advertiser i bids truthfully, her expected payment is  
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Then we have 
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where the fourth equality is an application of integration by parts, and the seventh equality is due 

to (1).  

Because the search engine chooses the mechanism that maximizes expected profit under all 

possible realizations of v, c, and α. For any given realization, when all advertisers report their 

true valuations, the search engine’s total revenue is 


n

i
im

1

)(v  and total shadow cost is 

ij

k
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n

i
ij cp

 1 1

)(v . So for all possible realizations the search engine’s total expected revenue is 
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. The search engine’s total expected profit is the total expected revenue 

minus the total expected shadow cost, i.e., 
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Proof of Corollary 1. Omitted. 

Proof of Theorem 1： 

Denote  ),()( iiiii bmEEEbm
ii 

 vvαc  
be advertiser i's expected payment when her bid is bi. 

First we will show that bidding truthfully is a Bayesian Nash equilibrium. In fact, if all 

advertisers but i bid their true values (i.e., b－i = v－i), by (8), advertiser i’s expected payment is 

dttpbpbbm
ib

viiiii  )()()( . Moreover, we have 

 

dttp

dttpvpvvpv

vmvpv

vmvpvEEEvv

i

i

ii

v

v

v

viiiii

iiii

iiiiiiiiii










 

)(

])()([)(

)( )(

),(),()|( vvvαc

 

Then, advertiser i’s expected payoff is 
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and the equality holds if and only if bi = vi by condition (iii). Therefore, advertiser i will bid i’s 

true value vi and i’s expected payment is dttpvpvvm
iv

viiii  )( )()( . Since 

dttpvmvpvvv
iv

viiiiiii  )()( )()|(  at the truthful equilibrium, thus 0)|( vvi  and 

dttpvvvv
iv

viiii  )()|()|(  . Therefore, this KAM meets the conditions (i) and (ii) in Lemma 

1. Because this KAM also satisfies conditions (iii) and (iv) in Lemma 1 since p solves (OP), it is 

a candidate KAM. Finally, this KAM satisfies the conditions of Corollary 1, so it is an optimal 

KAM.        □  

 

Proof of Lemma 3:  

We will show p satisfies condition (iii) and thus p solves (OP). Consider valuation vectors v 

= (v1, v2, …, vn)
T and v' = (v1, v2, …, vi1, vi + ε, …, vn)

T, for any ε > 0. Let   vP ijp  and 

  vP  ijp  be optimal allocation under v and v' respectively. Let 

   
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)()(, vPv  is the total net worth of advertiser i and 

   
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ik
ki ww PvPv ,,  represent the total net worth of advertisers other than i.  P'v,iw  and 
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 P'v,iw  are similar for allocation P′. Since P and P′ are optimal under v and v' respectively, we 

have 

       
       PvPvP'vP'v
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iiii
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Noticing that if we hold the allocation constant, the total net worth of advertisers other than i is 

the same under v and v', i.e.,    PvPv ,,   ii ww  and    P'vP'v ,,   ii ww . So we combine the 

two inequalities as 

       P'vPvP'vPv ,,,, iiii wwww   

Substituting       )()()(,, vP'vPv iiiiiii pvJvJww   and 

      )()()(,, vP'vP'v  iiiiiii pvJvJww  , we have 

    )()()()()()( vv  iiiiiiiiii pvJvJpvJvJ   

Since )()(  iiii vJvJ , we must have )()( vv  ii pp , which implies that p satisfies (iii). 

Moreover, p satisfies (iv) by the definition of (OP). So p solves (OP).        □ 

 

Proof of Lemma 4:   

Denote hi(bi| bi, c, ) as advertiser i's net payoff under bids bi, shadow costs c, and CTRs 

. By the definition of dominant strategy incentive-compatible equilibrium (Bergemann and 

Morris, 2005), it is sufficient to show that hi(vi| bi, c, )  hi(bi| bi, c, ) for any bid vector bi. 

If vi  bik, hi(vi| bi, c, ) = 0 and we can easily show that hi(vi| bi, c, )  hi(bi| bi, c, ). In 

fact, if bi < bik, then the bidder remains unassigned and gets a zero payoff. If bi > bik, then the 

bidder is assigned but earns a negative net payoff, because the marginal price is at least bik . 

If vi > bik, and the bidder will get position l if she bids truthfully, we can show hi(vi| bi, c, ) 
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 hi(bi| bi, c, ) as follows. If bi,l1 > bi  bil, then she gets the same position l, and hi(vi| bi, c, ) 

= hi(bi| bi, c, ). If bi > bil1, and she gets a higher position m (m < l), then  
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where the inequality holds because bis  vi for s < l. 

If bi < bil then she gets a lower position m (m > l) then  
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where the inequality holds because bis < vi for s > l.                    □ 

 

Proof of Theorem 2:   

       By Lemma 4, the KAM defined by (9) and (10) is dominant strategy incentive compatible. 
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Next we will show this KAM is optimal by showing the allocation and payment rules satisfy 

conditions in Theorem 1.  

Firstly, under truthful bidding, (9) is the same as (OP), thus, by Lemma 3, the allocation 

rule defined by (9) solves (OP).  

Secondly, by Theorem 1, under truthful bidding, the total payment from advertiser i is,  

dttpv

dttpvpvm

i

v

v iiii

i

v

v iiiiii

i

i

),(           

),(),( )(

)(, 










v

vvv


 

If the advertiser is unassigned, the above is zero, which coincides with (10). Suppose the 

advertiser is assigned. Recall that bij is non-increasing with j. When advertiser i bids between 

[ isb , 1, sib ), for some s > (i), she will obtain position s. Therefore, 
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where αi,k+1 = 0. So we get 



k

is
issiisi bm

)(
1, )( )(



v , which coincides with payment rule defined 

in (10) with truthful bidding.               □ 

 

Proof of Theorem 3: Omitted. Please refer to the proof of Theorem 4 for an example.   

 

Proof of Theorem 4:  

Under assumption that a
i

p
j

a
iij cc  , (OP′) becomes 
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   vαcvp ,,),( s.t. ,)()(  max

1 1

anyforivcvJp
k

j

n

i

a
ii

a
i

p
jij

 

  (OP′′) 

To see that the greedy scoring mechanism is optimal, we note that according to (OP), if sII(i) 

< 0, it is never optimal to assign i to any position. In the mean time, it is never optimal to leave 

position j empty if there exists some unassigned advertiser i such that sII(i) > 0. Also, it is 

obviously never optimal to fill position j (≤ k ) while j  1 is empty. Now, suppose sII(i) > sII(l) 

for some advertisers i and l. For any positions j < s, we have p
j sII(i) + p

s sII(l) ≥ p
s sII(i) 

+ p
j sII(l). So it is never optimal to assign advertiser l before advertiser i. The above arguments 

suggest that the allocation function stated in Theorem 4 is optimal.        □ 

 

Proof of Theorem 5:  

Under the assumption a
i

p
j

a
i

p
jij ccc  ,  (OP') becomes 
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(OP''') 

We first show that the optimal KAM is a scoring mechanism. Specifically, we first note that, 

according to (OP'''), if sIII(i)  
p
j

p
jc


 < 0, it is never optimal to assign i to position j. In the 

meantime, it is never optimal to leave position j empty if there exists some unassigned advertiser 

i such that sIII(i)  
p
j

p
jc


> 0. If there are two advertisers i and l with sIII(i) > sIII(l) >0, then for any 

s > j, p
j [sIII(i) –

p
j

p
jc


 ] + p

s [sIII(l) – p
s

p
sc


] ≥ p

s [sIII (i) – p
s

p
sc


] + p

j [sIII (l) –
p
j

p
jc


] (note that p

j  

≥ p
s  ≥ 0 and the equality only holds when p

j  = p
k  = 0 or j > k). Therefore, like in Theorem 4, 
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it is never optimal to place advertiser l before advertiser i. The above arguments suggest that the 

scoring rule and minimum bid policy stated in Theorem 5 are optimal.  

We now show that the optimal allocation rule is greedy under (10). If sIII(i) –
p
j

p
jc


> 0, it is 

never optimal to assign advertiser i to position j + 1 while j is empty. This is because p
j (sIII(i) –

p
j

p
jc


) > p

j 1 (sIII(i) –
p
j

p
jc

1

1






) (note that p

j  > p
j 1  and 

p
j

p
jc

   ≤ p
j

p
jc

1

1






).        □  

 

 

 
 

 


