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Abstract

Association rule mining is one of the most important fields in data mining and knowledge discovery in

databases. Rules explosion is a problem of concern, as conventional mining algorithms often produce too many

rules for decision makers to digest. Instead, this paper concentrates on a smaller set of rules, namely, a set of simple

association rules each with its consequent containing only a single attribute. Such a rule set can be used to derive

all other association rules, meaning that the original rule set based on conventional algorithms can be ‘recovered’

from the simple rules without any information loss. The number of simple rules is much less than the number of all

rules. Moreover, corresponding algorithms are developed such that certain forms of rules (e.g. ‘P ) ?’ or ‘? ) Q’)

can be generated in a more efficient manner based on simple rules. q 2002 Elsevier Science Ltd. All rights

reserved.

Keywords: Data mining; KDD; Simple association rules

1. Introduction

Data mining, as one of the promising technologies since 1990s, is to some extent a non-traditional

data-driven method to discover novel, useful, hidden knowledge from massive data sets. It has been

considered very important in business, industries and engineering. Data mining can be categorized into

several interesting areas, such as clustering, association rules, decision tree analysis, prediction,

regression, etc. (Fayyad, Piatetsky-Shapiro, & Smyth, 1996). In particular, since Agrawal, Imielinski,

and Swarmi (1993) introduced the notion of association rules in 1993, association rule mining has

attracted more and more attention of academia and practitioners with applications such as customer

relation management (CRM), market baskets, economic and financial time-series analysis, production

process, manufacturing diagnosis, etc. (Fayyad et al., 1996; Motwani, Ullman & Tsur, 1997; Wang,

Chen, & Cai, 1997).
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Roughly speaking, an association rule can be regarded as a relationship of the form A ) B, where A

and B are two separate sets of items. Two measures, namely the degree of support (Dsupp) and the

degree of confidence (Dconf), are used to define a rule. Dsupp is the percentage of transactions

containing both A and B in the whole data set. Dconf is the ratio of the number of transactions that

contain A and B over the number of transactions that contain A. For example, a rule like

“Milk ) Diapers with Dsupp ¼ 20%, Dconf ¼ 80%” means that “20% of the customers bought both

Milk and Diapers” and “80% of the customers who bought Milk also bought Diapers”.

Thus, the process of mining association rules is, given pre-defined thresholds (i.e. minimal support

and minimal confidence), to search the whole data set and discover all possible association rules with

their Dsupps and Dconfs greater than or equal to the thresholds. In accordance with this mining process,

the basic Apriori algorithm, regarded as a conventional mining method, was introduced by Agrawal and

Srikant (1994) and Usama, Fayyad, and Uthurusamy (1994). Many research efforts have then been made

in two directions. One is to extend the notion of association rules, giving rise to various extensions such

as generalized association rules (Srikant & Agrawal, 1995), quantitative association rules (Srikant &

Agrawal, 1996), fuzzy association rules (Chen, Wei, & Kerre, 2000; Kuok, Fu, & Wong, 1998; Wei &

Chen, 1999), etc. The other is to improve the algorithms in various ways such as fast algorithms

(Agrawal & Srikant, 1994; Zaki, Parthasarathy, Ogihara, & Li, 1999), sampling algorithms (Usama et al.,

1994), parallel and distributed algorithms (Agrawal & Shafer, 1996; Mueller, 1995), etc.

Notably, in the above-mentioned Apriori-based mining process, a large number of combinations of

items need to be scanned and generated, usually resulting in so many rules that cannot easily be handled

or used by decision makers. Therefore, ‘rule explosion’ itself becomes a problem, which can be even

severe in dense data sets (Roberto, Bayardo, Agrawal, & Gunopulos, 1999b). With the resultant rule set

(interchangeably, hereafter referred to as the original rule set; otherwise indicated where necessary), the

problem could be dealt with in terms of rule interestingness, which is aimed at filtering out those useless,

redundant, or conflicting rules from the original rule set.

In doing so, not only are appropriate navigation mechanisms and visualization tools needed, but also

new appropriate measures for defining interestingness are required. There have been a variety of

attempts on rule interestingness from different perspectives (Fukuda, Morimoto, & Morishita, 1996;

Klemettinen, Mannila, Ronkainen, Toivonen, & Verkamo, 1994; Motwani et al., 1997; Roberto,

Bayardo, & Agrawal, 1999a; Roberto et al., 1999b; Srikant, Vu, & Agrawal, 1997). For example, the

measures such as gain and laplace evaluate rules according to their predictive strength. The measures

such as interest, conviction and improvement evaluate rules according to their predictive advantage. For

example, if we already have ‘A ) B with Dconf being 86%’, then ‘AC ) B with Dconf being 80%’ is

seemingly uninteresting, since the latter does not provide any significant predictive advantage over the

former. Other measures such as template can help filter out the rules that users do not care. Recently,

from the viewpoint of rule quality, a worth-noting work has been carried out to efficiently derive certain

rules that are of 100% confidence using a partition-based randomized algorithm (Yilmaz,

Triantaphyllou, Chen, & Liao, 2002). These interestingness measures and efforts can reduce the

number of extracted rules and improve the quality of rules to some extent.

While gain, laplace, interest, conviction, improvement, predictive strength and advantage are defined

or specified by users or experts, a template needs more a user’s participation to filter out uninteresting

rules. On one hand, these measures are user-oriented and context-dependent, which are deemed sound

and intuitive; on the other hand, many of them are heuristic and are based upon preset criteria or

somewhat subjective assumptions. Furthermore, the interesting rules may cause certain information loss.
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Here by information loss we mean that the semantics reflected by the original rule set cannot be

represented by the semantics reflected by the obtained interesting rules. This is due to the fact that the

original rule set cannot be recovered by the rules obtained from filtering based on interestingness

measures or preset criteria.

Furthermore, in some cases, decision makers may be interested in certain forms of rules instead of all

the rules, such as ‘high demand results in …’ (‘P ) ?’) or ‘…cause machine malfunctioning’ (‘? ) Q’).

Such focused rules can be found from all the rules generated by conventional mining methods. Of

course, it will be desirable if the available information (e.g. known P or Q ) could be incorporated into

the rule generation process so as to derive the rules more effectively.

In accordance with these concerns, the notion of simple association rules (SAR) will be introduced in

this paper. A simple rule is the rule with a single item as its consequent. It has been observed that Dconf

of a rule with multiple items in its consequent could be represented by Dconfs of other rules each with a

single item in its consequent. For instance,

Dconfðprinter ) paper&folderÞ ¼
kprinter&paper&folderk

kprinterk

¼
kprinter&paper&folderk

kprinter&paperk
£

kprinter&paperk
kprinterk

¼ Dconfðprinter&paper ) folderÞ £ Dconfðprinter ) paperÞ

Hereby kXk denotes the number of transactions containing the set of items, X, in the database. Thus, one

may first concentrate on mining simple rules, based on which other rules concerned can be derived.

Importantly, the set of simple rules is smaller in size but as ‘equivalently’ rich in semantics as the

original rule set. That is, such a set of simple rules can be used to induce all rules without information

loss, as well as those specifically focused rules. Working with simple rules has several advantages. First,

in some cases, simple rules are enough, e.g. using association rules for classification purposes. Second,

generating the focused rules does not need to obtain all rules. Third, deriving all the rules based on

simple rules involves a fewer number of candidate rules to be generated and evaluated. Please note that

the procedures discussed by Yilmaz et al. (2002) also derive SAR.

This paper is organized as follows. In Section 2, the simple rule set is defined along with its properties.

In Section 3, the method for mining simple rules is discussed. Section 4 deals with generating other rules

based on simple rules.

2. Problem statement and definitions

2.1. Preliminary description

Mining of association rules was introduced by Agrawal et al. (1993). Let I ¼ {Ii; i ¼ 1;…;m} be a set

of literals, called items. A database D is a set of transactions, where each transaction t is a set of items

such that t # I. An association rule is an implication of the form X ) Y, where X , I, Y , I, and

X > Y ¼ B: A transaction t is called to contain X, if X # t. Let Dsupp(X ) be the fraction of transactions

that contain X in a database D. The degree of support for a rule X ) Y is defined as DsuppðX ) YÞ ¼
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DsuppðX < YÞ: The degree of confidence for X ) Y is defined as DconfðX ) YÞ ¼ DsuppðX <
YÞ=DsuppðXÞ: The problem of mining association rules is to find all association rules that have their

degrees of support and of confidence no less than the pre-specified minimal support a and minimal

confidence b, respectively. In this paper, we use C to denote the set of all discovered rules, i.e.

C ¼ {r : X ) YlDsuppðrÞ $ a;DconfðrÞ $ b;X , I; Y , I; and X > Y ¼ B}:

2.2. Simple association rules

Unlike functional dependencies, association rules generally are not transitive and do not compose. For

example, given that X ) Y and X ) Z hold in database D, one cannot conclude that X ) YZ also holds

in database D. However, the following fact holds for association rules: DconfðX ) YZÞ ¼ DconfðX )

YÞ £ DconfðXY ) ZÞ; which is stated as Lemma 1.

Lemma 1. Given X, Y, Z , I, X > Y ¼ B; Y > Z ¼ B; X > Z ¼ B; we have

1. DconfðX ) YZÞ ¼ DconfðX ) YÞ £ DconfðXY ) ZÞ ¼ DconfðX ) ZÞ £ DconfðXZ ) YÞ

2. DsuppðX ) YZÞ ¼ DsuppðXY ) ZÞ ¼ DsuppðXZ ) YÞ

Proof. According to the definition of Dconf, we have

DconfðX ) YZÞ ¼
DsuppðXYZÞ

DsuppðXÞ
¼

DsuppðXYÞ £ DconfðXY ) ZÞ

DsuppðXÞ

¼ DconfðX ) YÞ £ DconfðXY ) ZÞ

By exchanging Y and Z, we obtain,

DconfðX ) YZÞ ¼ DconfðX ) ZÞ £ DconfðXZ ) YÞ

According to the definition of Dsupp, we have

DsuppðX ) YZÞ ¼ DsuppðXYZÞ ¼ DsuppðXY ) ZÞ ¼ DsuppðXZ ) YÞ: A

Consequently, we immediately have the following:

Lemma 2. Given X, Y, Z, C, where X, Y, Z , I, X > Y ¼ B; Y > Z ¼ B; X > Z ¼ B; and C is the set

of all discovered rules, then if X ) YZ [ C; then X ) Y [ C; X ) Z [ C; XY ) Z [ C and XZ )

Y [ C:

Proof. According to Lemma 1, we have DconfðX ) YZÞ ¼ DconfðX ) YÞ £ DconfðXY ) ZÞ: Since

Dconf(X ) Y ) $ Dconf(X ) YZ ) and Dconf(XY ) Z ) $ Dconf(X ) YZ ), and DsuppðXY ) ZÞ ¼

DsuppðX ) YZÞ # DsuppðX ) YÞ; then from X ) YZ [ C, we can conclude that X ) Y [ C and

XY ) Z [ C. Likewise, X ) Z [ C and XZ ) Y [ C. A
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According to Lemma 1, if Dsupps and Dconfs of X ) Y and XY ) Z are known, then Dsupp and

Dconf of X ) YZ can be computed directly. In addition, Lemma 2 tells us that if X ) YZ is a qualified

association rule (i.e. X ) YZ [ C ), then so are X ) Y and XY ) Z. With these results, one may further

consider that, if all such qualified rules can be decomposed into simple rules, then it would be desirable

to find a subset of rules from which all other rules in C may be derived. Theorem 1 states that all

association rules can indeed be ‘derived’ from a simple rule set. Prior to Theorem 1, the notion of

‘derive’ is described as follows.

Definition 1. Let R be an association rule set. A rule r is called to be derived from R, denoted by r [d R;
if r [ R or Dsupp and Dconf of rule r can be expressed by Dsupps and Dconfs of rules in R in the form of

Lemma 1.

Apparently, all rules in R can be derived from R.

Theorem 1. For a given database and pre-specified minimal support a and confidence b, let C denote

the set of all rules: C ¼ {r : X ) Y lX;Y , I;X > Y ¼ B;DsuppðrÞ $ a;DconfðrÞ $ b}; and let Cs

denote the simple rule set: Cs ¼ {r : X ) AlX , I;A [ I;X > A ¼ B;DsuppðrÞ $ a;DconfðrÞ $ b};
then

1. If r [ C; then r [d Cs;
2. {rlr [d Cs;DsuppðrÞ $ a;DconfðrÞ $ b} ¼ C:

Proof. (1) First consider a rule r with one item in its consequent: X ) Ii in C. Obviously r is also a

member of Cs. Now consider a rule r in C with k items in its consequent, without loss of generality:

X ) I1I2· · ·Ik; k $ 2: According to Lemma 1, DconfðrÞ ¼ DconfðX ) I1ÞDconfðXI1 ) I2I3· · ·IkÞ:
According to Lemma 2 and X ) I1I2· · ·Ik [ C; we have X ) I1;XI1 ) I2I3· · ·Ik [ C: Then by

applying Lemma 1 to XI1 ) I2I3· · ·Ik;DconfðrÞ ¼ DconfðX ) I1Þ £ DconfðXI1 ) I2Þ £ DconfðXI1I2 )

I3· · ·IkÞ: Again, applying Lemma 2 to XI1 ) I2I3· · ·Ik will lead to XI1 ) I2 [ C; XI1I2 ) I3· · ·Ik [ C:
Similarly, repeatedly using Lemma 1 and Lemma 2, we will finally get

DconfðrÞ ¼ DconfðX ) I1Þ £ DconfðXI1 ) I2Þ £ · · · £ DconfðXI1I2· · ·Ik21 ) IkÞ

and X ) I1;XI1 ) I2;…;XI1I2· · ·Ik21 ) Ik [ C: Since X ) I1;XI1 ) I2;…;XI1I2· · ·Ik21 ) Ik are

members of Cs, we can conclude that the Dconf of r can be computed by Dconfs of rules in Cs.

Now examine the Dsupp of r. Since DsuppðrÞ ¼ DsuppðXI1I2· · ·Ik21IkÞ ¼ DsuppðXI1I2· · ·Ik21 ) IkÞ;
it means that Dsupp of r equals Dsupp of XI1I2· · ·Ik21 ) Ik which is a member of Cs.

Since both Dsupp and Dconf of r can be expressed by Dsupps and Dconfs of rules in Cs, we conclude

that r [d Cs:
(2) On one hand, if r [ C then DsuppðrÞ $ a and DconfðrÞ $ b by definition. Also according to (1), we

have r [d Cs: That is, r [ C ) r [d Cs; DsuppðrÞ $ a; DconfðrÞ $ b: On the other hand, if r [d Cs;
and DsuppðrÞ $ a; DconfðrÞ $ b then it is straightforward that r [ C: That is, r [d Cs; DsuppðrÞ $ a;
DconfðrÞ $ b ) r [ C: Thus, {rlr [d Cs;DsuppðrÞ $ a;DconfðrÞ $ b} ¼ C: A

Theorem 1 states that (i) all rules in the whole rule set can be derived from the simple rule set; (ii)
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applying minimal support and confidence thresholds onto the derived rules will result in exactly the

whole rule set.

2.3. An example

The following example is presented to help illustrate the previous ideas.

From a given data set (Table 1) totally 18 rules will be discovered traditionally, with a ¼ 3=7;
b ¼ 65% (Table 2). Among these rules, #1–#14 are simple rules for each of them has a single item in its

consequent. Now look at composite consequent rules #15–#18, they can all be derived from single

consequent rules (Table 3). Then, in the process of mining association rules, one does not need to scan

the data set to compute Dsupps and Dconfs of #15, #16, #17 and #18, but only needs to compute their

corresponding simple rules and finally derive the composite consequent rules using these simple rules,

Table 1

An example of a data set

TID Items

#1 A D

#2 B E

#3 A B D E

#4 B D E

#5 B C D E

#6 A B E

#7 A B C D E

Table 2

All discovered rules (a ¼ 3/7, b ¼ 65%)

Rules Expression Dsupp Dconf (%)

#1 A ) B 3/7 75

#2 A ) D 3/7 75

#3 A ) E 3/7 75

#4 B ) D 4/7 66.7

#5 D ) B 4/7 80

#6 B ) E 6/7 100

#7 E ) B 6/7 100

#8 D ) E 4/7 80

#9 E ) D 4/7 66.7

#10 AB ) E 3/7 100

#11 AE ) B 3/7 100

#12 BD ) E 4/7 100

#13 BE ) D 4/7 66.7

#14 DE ) B 4/7 100

#15 A ) BE 3/7 75

#16 B ) DE 4/7 66.7

#17 D ) BE 4/7 80

#18 E ) BD 4/7 66.7
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which are illustrated in Table 3. That is, mining the simple rule set instead of the whole rule set will be

more efficient and easier.

3. Mining simple association rules

Based on the notion of simple rules, this section focuses on the corresponding mining algorithm.

3.1. Basic ideas

The process could be decomposed into two phases (Agrawal et al., 1993; Agrawal & Srikant, 1994):

1. Find all frequent itemsets, i.e. the itemsets that satisfy the minimal support threshold. This phase is the

basic step and similar to Apriori algorithm.

2. For each frequent itemset X ¼ I1I2· · ·Ik; compute Dconf(r ) for each potential rule r : X 2 Ij ) Ij;
j ¼ 1;…; k: If Dconf(r ) is greater than or equal to minimal confidence, then output r.

The difference between mining for SAR and mining for all association rules is that, to extract SAR

from any k-frequent itemset {I1,I2,…,Ik}, i.e. the frequent itemset consisting of k items, one only needs to

examine certain frequent itemsets, namely its (k 2 1)-frequent sub-itemsets instead of all j-frequent sub-

itemsets ðj ¼ 1; 2;…; k 2 1Þ: This leads to a substantial reduction of the computations. More concretely,

for a certain k-frequent itemset, traditionally, one needs to check all its (k 2 1)-frequent sub-itemsets,

(k 2 2)-frequent sub-itemsets, …, and l-frequent itemsets. That is, totally (2k 2 2) sub-itemsets should

be checked. Thus, for each k-frequent itemset, the Apriori algorithm computes Dconfs for (2k 2 2)

potential rules that are comprised of exactly k items. In the case of the simple rule mining, however, for

each k-frequent itemset, only k(k 2 1)-frequent sub-itemsets need to be checked. Accordingly, the

proposed simple rule mining algorithm computes Dconfs only for k potential rules, instead of (2k 2 2)

rules.

3.2. The algorithm

As mentioned in Section 3.1, the mining algorithm only needs to consider (k 2 1)-frequent

Table 3

Derived rules

Rules Derived from

#15: A ) BE {#1: A ) B, #10: AB ) E}

{#3: A ) E, #11: AE ) B}

#16: B ) DE {#4: B ) D, #12: BD ) E}

{#6: B ) E, #13: BE ) D}

#17: D ) BE {#5: D ) B, #12: BD ) E}

{#8: D ) E, #14: DE ) B}

#18: E ) BD {#7: E ) B, #13: BE ) D}

{#9: E ) D, #14: DE ) B}
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sub-itemsets for each k-frequent itemset in extracting l-consequent rules. This significantly reduces the

number of frequent itemsets needed in the rule generation. Furthermore, the recursive operations, which

are used in the Apriori algorithm to generate all rules, will be no longer needed (Agrawal & Srikant,

1994). Specifically, the algorithm is shown as in Fig. 1.

Then with the algorithm Rule_Generation given in Fig. 1, all the simple rules can be derived.

Theoretically, for a k-frequent itemset, using the traditional Apriori method (Agrawal & Srikant, 1994),

under the best situation (in that all of its corresponding candidate rules whose antecedents are (k 2 1)-

subsets and whose consequents are singletons do not satisfy minimal confidence, and therefore the

consecutive recursive processes will be no longer necessary), the number of rules that need to be

considered is k and only k (k 2 1)-subsets will be loaded into memory. While under the worst situation

(in that all of the corresponding rules generated by this k-frequent itemset satisfy the minimal confidence

threshold), the number of rules that need to be considered is 2k 2 2 and correspondingly, all the non-

empty and strict (2k 2 2) subsets of this k-frequent itemset need to be loaded into memory. However, in

the SAR-based method, for any k-frequent itemset, the number of rules that need to be considered is k

and only k (k 2 1)-subsets need to be loaded into memory. Clearly, mining based on SAR is

advantageous in efficiency.

To illustrate the effect of reduction in computation, an experiment has been conducted on the

Fig. 1. Algorithm Rule_Generation.

Fig. 2. Numbers of frequent itemsets needed in rule generation.
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T10.I5.D10k synthetic data set, which was generated according to a typical procedure as introduced by

Agrawal and Srikant (1994). Conventionally, T10.I5.D10k denotes a data set with 10 different items and

10,000 transactions, each being of the length of five items on average. Fig. 2 shows the experimental

results. In the case of mining the simple rule set, the number of frequent itemsets (marked by the dashed

line) dropped sharply after pass 3, whereas in the case of mining the whole rule set, the number of

frequent itemsets (marked by the solid line) increased continuously as the number of passes increases.

3.3. The number of rules

Since the set of simple rules is a subset of the set of all rules, the number of simple rules is usually

smaller than that of all rules. Theoretically, in the best case, i.e. when all possible rules pertain, which

means that the thresholds minimal support ¼ 0, minimal confidence ¼ 0, there will be a total of

(3m 2 2mþ1 þ 1) rules generated. By contrast, there will be only m(2m21 2 1) simple rules generated.

Hereby, m ¼ lIl is the number of items. For instance, with 10 items, there will be a total of 57,002 rules

generated, whereas there will be only 5,110 simple rules. In the worst case, the set of all the rules

generated equals the set of simple rules.

Further, two synthetic data sets were used to compare the number of rules. To simulate the data sets

with different density (based on Agrawal & Srikant, 1994), the number of potential frequent itemsets was

set to different levels. In these experiments, 50 for dense data and 100 for sparse data were used. To

examine the effect of different minimal support levels, the minimal confidence is fixed at 60%.

The experiment results (i.e. Figs. 3 and 4) revealed that the number of simple rules was usually 10–

50% smaller than that of all rules. This gap would increase as the minimal support threshold decreased.

On dense data sets there would be a relatively small set of simple rules discovered.

4. Deriving focused rules based on simple rules

In some cases, e.g. when using association rules for classification purposes, simple rules are sufficient.

In others cases, however, one may need to know other rules such as ‘P ) ?’ and ‘? ) Q’. Instead of

Fig. 3. Experiment on sparse data set.
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discovering such rules by generating and then screening all rules according to conventional mining

methods, one could derive the rules using the given antecedent or consequent based on simple rules.

Consider the case of ‘P ) ?’. For example, given the antecedent {sex ¼ female and education ¼

high}, one needs to find all rules with antecedent {sex ¼ female}, {education ¼ high} or {sex ¼ female

and education ¼ high}. With the set of simple rules Cs and an antecedent P(P # I ), Algorithm 4.1 will

derive all rules {r : X ) Y}; such that X # P (Fig. 5).

For each k-consequent rule r in Pk, the algorithm will scan Cs for rules whose antecedents are exactly

the combination of the antecedent and consequent of r. If they also satisfy the minimal support and

minimal confidence thresholds, then they are used to derive new (k þ 1)-consequent rules. Concretely, if

we derive Pk, then for each X ) I1I2· · ·Ik; Ij [ I; j ¼ 1; 2;…; k; we scan Cs to see if there exists any

XI1I2· · ·Ik ) Ikþ1; based on which a (k þ 1)-consequent rule could be generated and put into Pkþ1 if

Fig. 4. Experiment on the dense data set.

Fig. 5. Algorithm 4.1.
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satisfying the minimal confidence threshold. After computing all the k-consequent rules in Pk, Pkþ1 is

generated. If there exists any element in Pkþ1, then continue to generate Pkþ2, otherwise stop. In this

way, all association rules whose antecedents are subsets of P are derived. Note that an order ikþ1 . ik is

imposed so as to avoid duplication in the process of derivation.

Consider the case of ‘? ) Q’. For example, given the consequent {sex ¼ female and education ¼

high}, one needs to find all rules with consequent {sex ¼ female} or {education ¼ high} or

{sex ¼ female and education ¼ high}. With consequent Q, Q # I, the mining algorithm has been

developed as shown in Fig. 6.

In the SAR-based mining as shown in algorithms 4.1 and 4.2, the focused rules like ‘P ) ?’ or

‘? ) Q’ can be generated. For the sake of simplicity, without loss of generality, consider algorithm 4.1

for the number of rules generated. If a ¼ 0; steps 6–13 will lead to a range between m(2m21 2 1)

(where only simple rules are qualified rules, so P2 ¼ B) to (2m2lPl £ 3lPl 2 2m 2 2lPl þ 1) ðb ¼ 0Þ

depending on given P for 1 # lPl # m: Clearly, this is much better than the way to generate all the rules

using the conventional methods, which in general are at the level of (3m 2 2mþ1 þ 1). When setting

lPl ¼ lIl ¼ m; ð2m2lPl £ 3lPl 2 2m 2 2lPl þ 1Þ ¼ ð3m 2 2mþ1 þ 1Þ:
Note that by setting P ¼ I in algorithm 4.1 or Q ¼ I in algorithm 4.2 and evaluating the rules against

a and b will result in deriving the whole rule set C. If it is required to generate all the rules in C, either of

the algorithms will perform better than the conventional methods. This is true because the number of

(candidate) rules generated by any one of algorithms 4.1 and 4.2 will be less than that by the

conventional methods. For instance, if some items do not appear in any rule as its consequent, then no

other rule with these items will be generated as part of its consequent. This may not be the case for the

conventional methods. This could be further illustrated by the following two facts: (1) Dconf(X )

Y) $ Dconf(X ) YZ); and (2) Dconf(XY ) Z) $ Dconf(X ) YZ). According to Lemma 1,

Dconf ðX ) YZÞ ¼ Dconf ðX ) YÞ £ Dconf ðXY ) ZÞ: Since Dconf(X ) Y) and Dconf(XY ) Z) # 1.

So Dconf(X ) Y) $ Dconf(X ) YZ) and Dconf(XY ) Z) $ Dconf(X ) YZ). In the traditional

Apriori method (Agrawal & Srikant, 1994), only the second fact is used as a pruning strategy in the

mining process. For any frequent itemset XYI1, if XY ) I1 does not satisfy the minimal confidence b,

Fig. 6. Algorithm 4.2.
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then X ) YI1 will not be considered in the process since it does not satisfy b. However, the traditional

Apriori method does not incorporate the first fact in the rule-generation algorithm. In the case where

XY ) I1 satisfies b but X ) Y does not, the traditional Apriori method may still generate candidate rule

X ) YI1 and test it against b. By contrast, in the SAR-based algorithms 4.1 and 4.2, this situation could

be avoided, for if either X ) Y or XY ) I1 dissatisfies b, then X ) YI1 will not be generated as a

candidate rule and needs not to be further considered in the mining process.

Consider the example shown in Section 2.3. It is easy to find out that A does not appear as a consequent

of any simple rules due to its Dconf value. Therefore, rules containing A on the right hand side

(consequent) such as B ) AE (Dsupp(B ) AE ) ¼ 3/7, Dconf(B ) AE ) ¼ 50%) and E ) AB

(Dsupp(E ) AB ) ¼ 3/7, Dconf(E ) AB ) ¼ 50%) will not be generated as candidate rules by algorithm

4.1 or 4.2. However, according to the traditional Apriori method (Agrawal et al., 1994), such rules may be

generated as candidate rules because both AB ) E and AE ) B are qualified rules (though they may be

filtered out afterwards according to b ). Clearly, the proposed algorithms are more efficient in this regard.

Finally, it is worth noting that the SAR-based method does not involve any heuristics or preset criteria

as used in other interestingness measures and related methods. Therefore, information loss could be

avoided. That is, the rules obtained based on the SAR method could be used to derive any other rules of

the original rule set, if desired so. In addition, if the heuristics are preferred, those interestingness

measures may then be applied to the SAR-derived rules, depending on the need of decision makers.

However, as indicated previously, those measures may cause information loss.

5. Concluding remarks

Data mining has been widely used in business, industries and engineering. In this paper, a simple rule

set has been introduced, which retains all information in the original rule set, but has a smaller size. It has

been proved that all qualified association rules can be derived from the SAR. Furthermore, mining

algorithms have been proposed to the discovered simple rules, focused rules and all qualified rules.

These algorithms have showed their advantages over conventional methods in terms of the number of

candidate rules (therefore the time of computation). Currently, ongoing research is being conducted on

further algorithmic optimizations. For example, certain pruning strategies are evaluated and will be

incorporated into the algorithms.
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